Volume 96, Issue 6, Pages e6 (December 2017)

Slides:



Advertisements
Similar presentations
Matthew R. Banghart, Bernardo L. Sabatini  Neuron 
Advertisements

Volume 86, Issue 2, Pages (April 2015)
Volume 35, Issue 1, Pages (July 2002)
Jason R. Chalifoux, Adam G. Carter  Neuron 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Light and Hydrogen Peroxide Inhibit C
Volume 78, Issue 5, Pages (June 2013)
Volume 31, Issue 4, Pages (August 2001)
Volume 67, Issue 2, Pages (July 2010)
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
An Integrated Serotonin and Octopamine Neuronal Circuit Directs the Release of an Endocrine Signal to Control C. elegans Body Fat  Tallie Noble, Jonathan.
Volume 57, Issue 3, Pages (February 2008)
Light and Hydrogen Peroxide Inhibit C
Volume 133, Issue 5, Pages (May 2008)
LTP Requires a Unique Postsynaptic SNARE Fusion Machinery
Volume 75, Issue 6, Pages (September 2012)
Volume 86, Issue 2, Pages (April 2015)
Aleksander Sobczyk, Karel Svoboda  Neuron 
Volume 15, Issue 24, Pages (December 2005)
Volume 19, Issue 11, Pages (June 2009)
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Protons Act as a Transmitter for Muscle Contraction in C. elegans
M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels  Andrew J. Giessel, Bernardo.
Volume 21, Issue 8, Pages (November 2017)
Volume 36, Issue 5, Pages (December 2002)
LIN-23-Mediated Degradation of β-Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans  Lars Dreier, Michelle.
Takashi Murayama, Jun Takayama, Mayuki Fujiwara, Ichiro N. Maruyama 
Rebecca S. Jones, Reed C. Carroll, Scott Nawy  Neuron 
Volume 75, Issue 5, Pages (September 2012)
Coiled Coils Direct Assembly of a Cold-Activated TRP Channel
Two Clathrin Adaptor Protein Complexes Instruct Axon-Dendrite Polarity
Volume 46, Issue 4, Pages (May 2005)
Christine Grienberger, Xiaowei Chen, Arthur Konnerth  Neuron 
Volume 83, Issue 3, Pages (August 2014)
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Dario Brambilla, David Chapman, Robert Greene  Neuron 
Volume 97, Issue 2, Pages e3 (January 2018)
Endocannabinoids Mediate Neuron-Astrocyte Communication
Lateral Facilitation between Primary Mechanosensory Neurons Controls Nose Touch Perception in C. elegans  Marios Chatzigeorgiou, William R. Schafer  Neuron 
Volume 57, Issue 2, Pages (January 2008)
Volume 52, Issue 4, Pages (November 2006)
Volume 71, Issue 1, Pages (July 2011)
Volume 39, Issue 2, Pages (October 2016)
Volume 80, Issue 6, Pages (December 2013)
Volume 43, Issue 3, Pages (August 2004)
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Matthew S. Kayser, Mark J. Nolt, Matthew B. Dalva  Neuron 
A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling
Volume 60, Issue 5, Pages (December 2008)
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Sylvain Chauvette, Josée Seigneur, Igor Timofeev  Neuron 
Volume 80, Issue 1, Pages (October 2013)
Andrea McQuate, Elena Latorre-Esteves, Andres Barria  Cell Reports 
Volume 85, Issue 3, Pages (February 2015)
Volume 88, Issue 6, Pages (December 2015)
Volume 149, Issue 1, Pages (March 2012)
Distinct Functional and Pharmacological Properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA Receptors  Kasper B. Hansen, Kevin K. Ogden, Hongjie Yuan,
Takashi Hayashi, Gavin Rumbaugh, Richard L. Huganir  Neuron 
Volume 75, Issue 5, Pages (September 2012)
Interaxonal Interaction Defines Tiled Presynaptic Innervation in C
Volume 64, Issue 3, Pages (November 2009)
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Kinetics of Synaptic Vesicle Refilling with Neurotransmitter Glutamate
Volume 31, Issue 4, Pages (August 2001)
Byung-Chang Suh, Karina Leal, Bertil Hille  Neuron 
Volume 59, Issue 6, Pages (September 2008)
Volume 15, Issue 24, Pages (December 2005)
Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Volume 96, Issue 6, Pages 1303-1316.e6 (December 2017) NRAP-1 Is a Presynaptically Released NMDA Receptor Auxiliary Protein that Modifies Synaptic Strength  Ning Lei, Jerry E. Mellem, Penelope J. Brockie, David M. Madsen, Andres V. Maricq  Neuron  Volume 96, Issue 6, Pages 1303-1316.e6 (December 2017) DOI: 10.1016/j.neuron.2017.11.019 Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 nrap-1 Encodes an LDLa-Domain Protein Expressed in Presynaptic Cells and Required for NMDAR-Dependent Behavior (A–D) Average forward duration (mean ± SEM). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by Mann-Whitney U test (A, C, and D) or Welch’s t test (B). n = 8 for all genotypes in (A). For genotypes in (B), wild-type, n = 21; ak365, n = 20; gk874318, n = 20; ak365; Pnrap-1::nrap-1::mCherry, n = 13. n = 9 for all genotypes in (C). For genotypes in (D), wild-type, n = 11; ky176, n = 12; ok3474, n = 7; ky176; ok3474, n = 12. (E) NRAP-1 amino acid sequence. Signal peptide (boxed), conserved cysteines (red), residues mutated in nrap-1(gk874318) (asterisks) and nrap-1(ak365) (red arrowhead), region deleted in nrap-1(ok3474) (blue), and predicted N-linked glycosylation (black arrowhead). (F and G) Images of anterior (head) and posterior (tail) neuronal cell bodies in transgenic worms that co-expressed Pnrap-1::nrap-1::SL2::gfp with either Peat-4::mCherry (F) or Pnmr-1::mCherry (G). GFP was tagged with a nuclear localization sequence. Scale bars, 10 μm. (H and I) Images of the VNC in transgenic worms that co-expressed Pnrap-1::gfp::nrap-1 with either Peat-4::eat-4::mCherry (H) or Pflp-18::mCherry::nmr-2 (I). Scale bars, 5 μm. (J) Images of a transgenic worm that expressed Pnrap-1::nrap-1::mCherry. Arrowheads indicate coelomocytes. Scale bar, 5 μm. See also Figures S1 and S2. Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 nrap-1 Is Specifically Required for NMDA-Gated Current In Vivo (A and B) Currents in AVA in response to glutamate (A) or NMDA (B). Dashed gray line in (A) indicates baseline before glutamate application. (C) Average peak current (mean ± SEM). ∗∗p < 0.01, significantly different from wild-type by Mann-Whitney U test. ∗p < 0.05, ∗∗∗p < 0.001, significantly different from nrap-1 mutants by one-sample, one-tailed Student’s t test comparing the mean for each genotype with zero (i.e., no current). Wild-type, n = 10; nrap-1 mutants, n = 12; ak365 + Pnrap-1::nrap-1::mCh, n = 4. ND, no current detected. (D) NMDA-gated currents in AVA. (E) Average peak current (mean ± SEM). Significantly different from nrap-1(ak365) mutants where no current was detected (data not shown); ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by one-sample, one-tailed Student’s t test. Wild-type, n = 10; Peat-4, Pnmr-1, and Pflp-18, n = 4; Pmyo-3, n = 5. (F) Images of mCherry and GFP fluorescence in the VNC of a transgenic worm that expressed Pflp-18::nrap-1::gfp and Prig-3::mCherry::nmr-2 in AVA. Scale bar, 5 μm. (G) NMDA-gated currents in AVA in wild-type, mutant, and transgenic mutants. Wild-type average peak current shown in (C) and (E) was from pooled data. See also Figure S2. Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 nrap-1 Is Not Required for NMDAR Localization or Surface Expression (A) Images of AVA processes in the VNC in a transgenic wild-type worm (left) or nrap-1 mutant (right) that expressed SEP::mCherry::nmr-2. Scale bar, 5 μm. (B) Images of neural processes in the VNC in a transgenic wild-type worm (left) or nmr-1; nmr-2 mutant (right) that expressed SEP::mCherry::nrap-1 in presynaptic neurons. Scale bar, 5 μm. (C and D) Images of the VNC in transgenic nmr-1; nmr-2 nrap-1 triple mutants that co-expressed Pmyo-3::nrap-1::gfp with either Pflp-18::mCherry::nmr-1 and Prig-3::mCherry::nmr-2 (C) or Prig-3::mCherry (D) (two examples from each strain). Scale bars, 2 μm. See also Figures S2 and S3. Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 NRAP-1 Modifies the Function of NMDARs (A and B) Currents in response to 1 mM glutamate (A) or 1 mM NMDA (B) application to Xenopus oocytes that expressed various combinations of NMR-1, NMR-2, and NRAP-1 (Ca2+ Ringer’s solution). (C–E) Currents in response to NMDA or glutamate (200 μM) in oocytes that expressed NMR-1, NMR-2, and NRAP-1. (C) Current responses in oocytes bathed in either Ca2+ or Ba2+ containing Ringer’s solution. (D and E) Current responses before, during, and after washout of MK-801 (D), or before and during incubation in Con-A (E). (F) Current responses to 200 μM glutamate in an oocyte that expressed NMR-1 and NMR-2 (top). Current was not detected in uninjected, control oocytes (bottom). Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 Recombinant NRAP-1 Restores Current in nrap-1 Mutants (A and B) Currents in AVA neurons in response to either NMDA (A) or glutamate (B) in the presence or absence of recombinant NRAP-1 or control media. (C) Currents in AVA neurons in response to NMDA following selective knockdown of NRAP-1 in presynaptic glutamatergic neurons. Neurons were held at +40 mV. (D and E) Model showing NRAP-1 secretion from presynaptic glutamatergic neurons followed by diffusion and binding to postsynaptic NMDARs (D), or NRAP-1 anchored to the presynaptic membrane via an unknown factor (Protein X), thereby stabilizing its association with postsynaptic NMDARs (E). Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 6 Recombinant NRAP-1 Reveals the Presence of Silent NMDARs (A–C) Currents in AVA neurons in response to NMDA. Cells held at +40 mV. (A) The initial response in a wild-type worm and that following 2 and 5 min of bath solution exchange. (B) Current in an nrap-1 mutant in the presence of recombinant NRAP-1 and after 1 and 2 min of washout. (C) Currents in a wild-type worm in the absence and presence of recombinant NRAP-1 and after 5 min of washout. (D–F) Currents in response to NMDA in muscle cells of transgenic worms that ectopically express NMR-1 and NMR-2 (D) or NMR-1, NMR-2, and NRAP-1 (E and F) specifically in muscle cells. Shown are currents before (D and E) and after (D–F) recombinant NRAP-1 application, and after 8 min of washout (D and F). See also Figure S4. Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 7 NRAP-1 Is Required for the Gating of NMDARs Currents in response to rapid uncaging of glutamate. Cells were held at +40 mV. Gray arrowheads indicate a 1 ms pulse of UV light. Gray record shows the response to light in the absence of MNI-glutamate. (A) Shown are the averages of ten uncaging events per genotype. (B–D) Individual current records (two per genotype) in a glr-1 mutant (B), nmr-1; glr-1 mutant (C), or glr-1; nrap-1 mutant (D). (E) Individual current records in the presence of recombinant NRAP-1 and following 2, 4, 8, and 10 min of washout. Neuron 2017 96, 1303-1316.e6DOI: (10.1016/j.neuron.2017.11.019) Copyright © 2017 Elsevier Inc. Terms and Conditions