Statistical Methods Lecture 26

Slides:



Advertisements
Similar presentations
Copyright © 2010 Pearson Education, Inc. Slide
Advertisements

Statistical Methods Lecture 25
Chapter 18: The Chi-Square Statistic
Chapter 26 Comparing Counts
Chapter 11 Other Chi-Squared Tests
CHAPTER 23: Two Categorical Variables: The Chi-Square Test
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 25, Slide 1 Chapter 25 Comparing Counts.
Chapter 26: Comparing Counts
Crosstabs and Chi Squares Computer Applications in Psychology.
GOODNESS OF FIT TEST & CONTINGENCY TABLE
Copyright © 2012 Pearson Education. All rights reserved Copyright © 2012 Pearson Education. All rights reserved. Chapter 15 Inference for Counts:
 Involves testing a hypothesis.  There is no single parameter to estimate.  Considers all categories to give an overall idea of whether the observed.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 26 Comparing Counts.
Chapter 26: Comparing Counts AP Statistics. Comparing Counts In this chapter, we will be performing hypothesis tests on categorical data In previous chapters,
Copyright © 2010 Pearson Education, Inc. Warm Up- Good Morning! If all the values of a data set are the same, all of the following must equal zero except.
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
CHAPTER 11 SECTION 2 Inference for Relationships.
Slide 26-1 Copyright © 2004 Pearson Education, Inc.
Chapter 22: Comparing Two Proportions. Yet Another Standard Deviation (YASD) Standard deviation of the sampling distribution The variance of the sum or.
Copyright © 2010 Pearson Education, Inc. Slide
Comparing Counts.  A test of whether the distribution of counts in one categorical variable matches the distribution predicted by a model is called a.
Inference for Distributions of Categorical Variables (C26 BVD)
© Copyright McGraw-Hill CHAPTER 11 Other Chi-Square Tests.
Chapter 13 Inference for Counts: Chi-Square Tests © 2011 Pearson Education, Inc. 1 Business Statistics: A First Course.
Copyright © 2010 Pearson Education, Inc. Warm Up- Good Morning! If all the values of a data set are the same, all of the following must equal zero except.
11.2 Tests Using Contingency Tables When data can be tabulated in table form in terms of frequencies, several types of hypotheses can be tested by using.
Section 12.2: Tests for Homogeneity and Independence in a Two-Way Table.
Chapter 13- Inference For Tables: Chi-square Procedures Section Test for goodness of fit Section Inference for Two-Way tables Presented By:
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Comparing Counts Chapter 26. Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted.
Statistics 26 Comparing Counts. Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted.
Chapter 11: Categorical Data n Chi-square goodness of fit test allows us to examine a single distribution of a categorical variable in a population. n.
Class Seven Turn In: Chapter 18: 32, 34, 36 Chapter 19: 26, 34, 44 Quiz 3 For Class Eight: Chapter 20: 18, 20, 24 Chapter 22: 34, 36 Read Chapters 23 &
Comparing Observed Distributions A test comparing the distribution of counts for two or more groups on the same categorical variable is called a chi-square.
Chapter 12 Lesson 12.2b Comparing Two Populations or Treatments 12.2: Test for Homogeneity and Independence in a Two-way Table.
 Check the Random, Large Sample Size and Independent conditions before performing a chi-square test  Use a chi-square test for homogeneity to determine.
Chi Square Test of Homogeneity. Are the different types of M&M’s distributed the same across the different colors? PlainPeanutPeanut Butter Crispy Brown7447.
Goodness-of-Fit A test of whether the distribution of counts in one categorical variable matches the distribution predicted by a model is called a goodness-of-fit.
Comparing Counts Chi Square Tests Independence.
CHAPTER 26 Comparing Counts.
Warm Up Check your understanding on p You do NOT need to calculate ALL the expected values by hand but you need to do at least 2. You do NOT need.
CHAPTER 11 Inference for Distributions of Categorical Data
Chi-square test or c2 test
Chapter 11 Chi-Square Tests.
Chapter 12 Tests with Qualitative Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 25 Comparing Counts.
Chapter 11: Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 10 Analyzing the Association Between Categorical Variables
Contingency Tables: Independence and Homogeneity
15.1 Goodness-of-Fit Tests
Inference for Relationships
Chapter 11 Chi-Square Tests.
CHAPTER 11 Inference for Distributions of Categorical Data
Lesson 11 - R Chapter 11 Review:
Paired Samples and Blocks
Chapter 26 Comparing Counts.
Chapter 13: Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 26 Comparing Counts Copyright © 2009 Pearson Education, Inc.
CHAPTER 11 Inference for Distributions of Categorical Data
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 26 Comparing Counts.
CHAPTER 11 Inference for Distributions of Categorical Data
Chapter 11 Chi-Square Tests.
CHAPTER 11 Inference for Distributions of Categorical Data
Presentation transcript:

Statistical Methods Lecture 26

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence The table below shows the importance of personal appearance for several age groups. Are Age and Appearance independent, or is there a relationship? 2

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence A stacked barchart suggests a relationship: Test for independence using a chi-square test of independence. 3

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence The test is mechanically equivalent to the test for homogeneity, but with some differences in how we think about the data and the results: Homogeneity Test: one variable (Card Type) measured on two or more populations (Mailings). Independence Test: Two variables (Appearance and Age) measured on a single population. We ask the question “Are the variables independent?” rather than “Are the groups homogeneous?” This subtle distinction is important when drawing conclusions. 4

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence Assumptions and Conditions Counted Data Condition – Data must be counts Independence Assumption – Counts need to be independent from each other. Check for randomization Randomization Condition – Random sample needed Sample Size Assumption – There must be enough data so check the following condition. Expected Cell Frequency Condition – Expect at least 5 individuals per cell. 5

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence Example : Automobile Manufacturers Consumer Reports uses surveys to measure reliability in automobiles. Annually they release survey results about problems that consumers have had with vehicles in the past 12 months and the origin of manufacturer. Is consumer satisfaction related to country of origin? State the hypotheses. Find the test statistic. Given the p-value, state your conclusion. 6

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence Example : Automobile Manufacturers 7

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence Example : Automobile Manufacturers Consumer Reports uses surveys to measure reliability in automobiles. Annually they release survey results about problems that consumers have had with vehicles in the past 12 months and the origin of manufacturer. Is consumer satisfaction related to country of origin? State the hypotheses. Find the test statistic. Given p-value = 0.231, state your conclusion. There is not enough evidence to conclude there is an association between vehicle problems and origin of vehicle. 8

Chi-Square Test of Independence QTM1310/ Sharpe Chi-Square Test of Independence For the Appearance and Age example, we reject the null hypothesis that the variables are independent. So, it may be of interest to know how differently two age groups (teens and 30-something adults) select the “very important” category (Appearance response 6 or 7). Construct a confidence interval for the true difference in proportions… Then point out, after last point, that you’re back in the “difference of two proportions” land. 9

Don’t use chi-square methods unless you have counts. QTM1310/ Sharpe Don’t use chi-square methods unless you have counts. Beware large samples! With a sufficiently large sample size, a chi-square test can always reject the null hypothesis. Don’t say that one variable “depends” on the other just because they’re not independent. 10

Goodness-of-Fit Tests QTM1310/ Sharpe Goodness-of-Fit Tests The Chi-Square Calculation Find the expected values. These come from the null hypothesis value. Compute the residuals, Square the residuals, Compute the components. Find for each cell. Find the sum of the components, Find the degrees of freedom Test the hypothesis, finding the p-value or comparing the test statistic from 5 to the appropriate critical value. 11

Comparing Chi-Square Tests Type of Data Type of Question Example Good-ness of Fit Counts in several categories Do the data match my model? M&Ms Homogeneity One variable, across multiple populations Is the variable similar across all populations? Types of credit cards (variable) across mailings (populations) Independence Two variables, one population Are the two variables independent or not? Problems and country of origin (variables) within cars (population)

Looking back Recognize when a chi-square test of goodness of fit, homogeneity, or independence is appropriate. Assumptions—same! Mechanics—same! Interpretation—(slightly) different! Assumptions: quantitative data from incr. normal popn as sample gets smaller, r. sample Particular form of the test statistic Two-tailed test: effect on the p-value (have to double tail prob) or rejection region (have to take given alpha & divide it between two tails)