Orientation Tuning—A Crooked Path to the Straight and Narrow

Slides:



Advertisements
Similar presentations
Building Better Models of Visual Cortical Receptive Fields
Advertisements

The Geometry of Visual Cortical Maps
Volume 32, Issue 2, Pages (October 2001)
A Motion Direction Map in Macaque V2
Volume 9, Issue 5, Pages (December 2014)
Development of Direction Selectivity in Mouse Cortical Neurons
Visual cortex: A cat's-eye view of the visual system
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Efficient Receptive Field Tiling in Primate V1
Pattern and Component Motion Responses in Mouse Visual Cortical Areas
Christopher C. Pack, Richard T. Born, Margaret S. Livingstone  Neuron 
Volume 36, Issue 5, Pages (December 2002)
Volume 72, Issue 5, Pages (December 2011)
Searching for Signatures of Brain Maturity: What Are We Searching For?
Volume 19, Issue 2, Pages (August 1997)
Vision: In the Brain of the Beholder
Two-Dimensional Substructure of MT Receptive Fields
Street View of the Cognitive Map
Unraveling the Complex Tapestry of Association Networks
Andrea Benucci, Robert A. Frazor, Matteo Carandini  Neuron 
A Motion Direction Preference Map in Monkey V4
Robert O. Duncan, Geoffrey M. Boynton  Neuron 
Uri Hasson, Michal Harel, Ifat Levy, Rafael Malach  Neuron 
Hongbo Yu, Brandon J. Farley, Dezhe Z. Jin, Mriganka Sur  Neuron 
Volume 71, Issue 4, Pages (August 2011)
A Map for Horizontal Disparity in Monkey V2
Unraveling the Complex Tapestry of Association Networks
Adaptation without Plasticity
Ferret Interneurons Defy Expectations
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Sleep Enhances Plasticity in the Developing Visual Cortex
Yael Stern-Bach, Sebastian Russo, Menahem Neuman, Christian Rosenmund 
Prediction of Orientation Selectivity from Receptive Field Architecture in Simple Cells of Cat Visual Cortex  Ilan Lampl, Jeffrey S. Anderson, Deda C.
Development of Direction Selectivity in Mouse Cortical Neurons
Feng Han, Natalia Caporale, Yang Dan  Neuron 
Integration of Local Features into Global Shapes
AMPA Receptor Activation
Voluntary Attention Modulates fMRI Activity in Human MT–MST
Why Seeing Is Believing: Merging Auditory and Visual Worlds
Cortical cartography: what's in a map?
Dendritic Spines and Distributed Circuits
Searching for Signatures of Brain Maturity: What Are We Searching For?
Pattern and Component Motion Responses in Mouse Visual Cortical Areas
Xiangying Meng, Joseph P.Y. Kao, Hey-Kyoung Lee, Patrick O. Kanold 
Street View of the Cognitive Map
The Normalization Model of Attention
Adaptation without Plasticity
AMPA Receptor Activation
Mark J. Buckley, Natasha Sigala  Neuron 
Stability of Cortical Responses and the Statistics of Natural Scenes
From Functional Architecture to Functional Connectomics
Bor-Shuen Wang, Rashmi Sarnaik, Jianhua Cang  Neuron 
Neuronal Plasticity: Beyond the Critical Period
MT Neurons Combine Visual Motion with a Smooth Eye Movement Signal to Code Depth-Sign from Motion Parallax  Jacob W. Nadler, Mark Nawrot, Dora E. Angelaki,
Cortical Microcircuits
What the Fish’s Eye Tells the Fish’s Brain
A Cortical Rein on the Tectum’s Gain
Cell Assemblies of the Superficial Cortex
Grid Cells and Neural Coding in High-End Cortices
Visual development: Making maps in the dark
End-Stopping and the Aperture Problem
Perceptual Learning: Is V1 up to the Task?
Volume 75, Issue 1, Pages (July 2012)
Vision and Cortical Map Development
Pairing-Induced Changes of Orientation Maps in Cat Visual Cortex
Neuronal Plasticity: Beyond the Critical Period
Volume 72, Issue 5, Pages (December 2011)
Efficient Receptive Field Tiling in Primate V1
Cortical Maps: Where Theory Meets Experiments
Presentation transcript:

Orientation Tuning—A Crooked Path to the Straight and Narrow Edward M. Callaway  Neuron  Volume 36, Issue 5, Pages 783-785 (December 2002) DOI: 10.1016/S0896-6273(02)01102-9

Figure 1 Orientation Preference Map Obtained from Optical Imaging of Cat Cortical Area 17 Regions responding preferentially to visual stimuli of various orientations are color coded according to the scale to the right. Locations of selected orientation “pinwheels” are marked by black circles. Locations of selected “constant-orientation” regions tuned for vertical stimuli are indicated by white circles. Modified from Hubener et al. (1997). Neuron 2002 36, 783-785DOI: (10.1016/S0896-6273(02)01102-9)