R.S. Cosden-Decker, M.M. Bickett, C. Lattermann, J.N. MacLeod 

Slides:



Advertisements
Similar presentations
Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects  C.D.
Advertisements

The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model  M.I. Menendez, D.J. Clark,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect.
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Deiodinase 2 upregulation demonstrated in osteoarthritis patients cartilage causes cartilage destruction in tissue-specific transgenic rats  H. Nagase,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Chitosan–glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects 
Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects  C.D.
Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein  Y. Uehara, J. Hirose, S.
L.N. Nwosu, P.I. Mapp, V. Chapman, D.A. Walsh 
Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular.
Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates  J.T. Sieker, M. Kunz,
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects – results at 12 and 18 months  D.D. Frisbie,
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates  J.T. Sieker, M. Kunz,
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
M.M.-G. Sun, F. Beier  Osteoarthritis and Cartilage 
T. Kimura, T. Ozaki, K. Fujita, A. Yamashita, M. Morioka, K. Ozono, N
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
The extent of degeneration of cruciate ligament is associated with chondrogenic differentiation in patients with osteoarthritis of the knee  K. Kumagai,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint.
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
The chondrogenic repair response of undifferentiated mesenchymal cells in rat full- thickness articular cartilage defects  Y. Anraku, M.D., H. Mizuta,
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Pretreatment of periosteum with TGF-β1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits 
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage  Colette Salvat, B.Sc., Audrey Pigenet, Lydie Humbert,
Angiopoietin-like protein 2 promotes chondrogenic differentiation during bone growth as a cartilage matrix factor  H. Tanoue, J. Morinaga, T. Yoshizawa,
Expression of the PTH/PTHrP receptor in chondrogenic cells during the repair of full- thickness defects of articular cartilage  H. Mizuta, M.D., Ph.D.,
Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
An experimental study on costal osteochondral graft
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
A novel in vivo murine model of cartilage regeneration
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
H.L. Reesink, A.E. Watts, H.O. Mohammed, G.D. Jay, A.J. Nixon 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5  M. Harada, M.D., M. Takahara, M.D., Ph.D.,
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis 
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Structural and functional analysis of intra-articular interzone tissue in axolotl salamanders  R.S. Cosden-Decker, M.M. Bickett, C. Lattermann, J.N. MacLeod  Osteoarthritis and Cartilage  Volume 20, Issue 11, Pages 1347-1356 (November 2012) DOI: 10.1016/j.joca.2012.07.002 Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Tibial defect model in the axolotl salamander. (A) Tibial defect location and (B) hind limb anatomy schematic, adapted from Ref. 36. (C) Surgical exposure of the tibia diaphysis prior to gap fracture creation. (D) The critical size tibial defects were made by removing a 4 mm length of tibial diaphysis. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Diarthrodial joint anatomy in axolotls greater than 12 months of age. Whole mount Aliziran Red and Alician Blue double staining of cartilage and bone structures in the (A) proximal femur, (D) radiohumoral, (G) femorotibial, and (J) carpal-metacarpal-phalangeal structures. Histological analyses reveal that cavitation occurs in the more proximal joints including femoroacetabular (B, C) and radiohumoral (E, F) articulations, while an interzone-like tissue is retained in more distal joints including the femorotibial (H, I), carpal (K), and interphalangeal (L) articulations. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Changes in cell morphology of tissue within the axolotl femorotibial joint from 2 to 24 months of age. Distal femoral cartilage (A–E) and interzone-like tissue of axolotl salamanders at 2, 4, 7, 12 and 24 months of age (F–J). Scale bar lengths are indicated. EC, epiphyseal/articular cartilage. MC, metaphyseal cartilage. MC-M, morphologically distinct metaphyseal cartilage zone adjacent to the medullary cavity. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Changes in cellularity of axolotl epiphyseal/articular cartilage in the distal femur and interzone-like tissue in the femorotibial joint from 2 to 24 months of age (mean ± SD). *Denotes difference in cellularity from groups after 7 months of age (P < 0.05). Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Expression of joint markers in mature axolotls. Type I collagen (A, F), type II collagen (B, G), Aggrecan (C, H), Proteoglycans (D, I), BOC (E) and GDF5 (J) in the distal femoral cartilage and interzone-like tissue of axolotl salamanders at greater than 12 months of age. Type I collagen, type II collagen, aggrecan, BOC, and GDF5 were detected by immunohistochemistry. Proteoglycan was visualized by Safranin-O staining. Images A–E are shown at 4× magnification, while images F–J are shown at 20× magnification. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Tibial fracture repair in axolotl salamanders. Whole mount bone (Aliziran Red) and cartilage (Alcian Blue) staining of (A–C) transverse bone fractures, (D–F) CSD, and (G–I) CSD with interzone tissue transplant at 15 days (A, D, G), 6 weeks (B, E, H), and 7 months (C, F, I) after surgery. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Repair of critical size tibial defects with interzone-like tissue transplants at 7 months post-surgery. (A) Whole mount Alcian Blue and Alizarin Red staining and (B) H&E staining reveal formation of an accessory joint (box) including interzone tissue (arrowheads) within the tibial defect space. (C) Safranin-O stained image demonstrates metaphyseal cartilage (MC), epiphyseal/articular cartilage (EC) and interzone tissue (IZ, arrows) within the accessory joint. (D) All tissues within the accessory joint displayed positive immunostaining for GFP confirming their development from the original interzone tissue transplant. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Supplemental Fig. 1 Immunohistochemistry controls. Positive and negative controls for immunohistochemical localization of aggrecan, BOC, type I collagen, type II collagen and GDF5 in axolotl joint tissues. Equine and murine samples were used as positive controls. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Supplemental Fig. 2 Spontaneous repair of a tibial gap fracture after fibula bowing Bone (Alizarin Red) and cartilage (Alcian Blue) staining of a normal axolotl hind limb (A). Bowing of the fibula (arrows) was observed in a few individuals after a 4 mm surgical resection of tibial diaphysis at 6 weeks (B) and 7 months (C) post-surgery which shortened the tibial gap and enabled spontaneous repair. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Supplemental Fig. 3 Safranin-O/Fast Green staining of critical size bone defects with muscle (A, C) or skin (B, D) transplants at 7 months after surgery. Fracture ends became rounded with evidence of cartilaginous cap formation, but the critical size defects failed to heal in the absence of interzone tissue transplants. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions

Supplemental Table I Axolotl tibial fracture experimental samples. Biological replicates, post-surgical collection time, and experimental processing of transverse fractures, critical size bone defects (CSD), CSD with interzone-like tissue transplants, CSD with muscle transplants and CSD with skin transplants. Osteoarthritis and Cartilage 2012 20, 1347-1356DOI: (10.1016/j.joca.2012.07.002) Copyright © 2012 Osteoarthritis Research Society International Terms and Conditions