Geometric application of non-compact

Slides:



Advertisements
Similar presentations
5.4 Basis And Dimension.
Advertisements

7. Rotations in 3-D Space – The Group SO(3)
Recovery of affine and metric properties from images in 2D Projective space Ko Dae-Won.
Introduction A Euclidean group consists of 2 types of transformations: Uniform translations T(b). Uniform rotations R n (  ). Goals: Introduce techniques.
Symmetries in Nuclei, Tokyo, 2008 Scale invariance Object of which a detail when enlarged becomes (approximately) identical to the object itself. Condition.
Mathematical Physics Seminar Notes Lecture 3 Global Analysis and Lie Theory Wayne M. Lawton Department of Mathematics National University of Singapore.
What is symmetry? Immunity (of aspects of a system) to a possible change.
A Physicists’ Introduction to Tensors
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 2.
Gerard ’t Hooft Chennai, November 17, 2009 Utrecht University.
C4 Lecture 3 - Jim Libby1 Lecture 3 summary Frames of reference Invariance under transformations Rotation of a H wave function: d -functions Example: e.
HOLOGRAPHIC SPACE TIME AND SUPERSYMMETRY MBG-60 Conference Cambridge, UK April 2006.
Prolog Text Books: –W.K.Tung, "Group Theory in Physics", World Scientific (85) –J.F.Cornwell, "Group Theory in Physics", Vol.I, AP (85) Website:
Symmetries and Conservation Laws Thank you, Emmy 1 Symmetries and Conservation Laws.
Math 71B 11.1 – Sequences and Summation Notation 1.
Welcome to AP Chemistry. Scientific Method l A method of solving problems/answering questions l Observation- what is seen or measured l Hypothesis- educated.
Edmund Bertschinger MIT Department of Physics and Kavli Institute for Astrophysics and Space Research web.mit.edu/edbert/Alexandria General Relativity.
Solvable Lie Algebras in Supergravity and Superstrings Pietro Fré Bonn February 2002 An algebraic characterization of superstring dualities.
David Renardy.  Simple Group- A nontrivial group whose only normal subgroups are itself and the trivial subgroup.  Simple groups are thought to be classified.
Generalization of the Gell-Mann decontraction formula for sl(n,R) and its applications in affine gravity Igor Salom and Đorđe Šijački.
Quadratics cutting axis (2) Algebra Quadratics cutting the x and y axis. In each of the examples which follow, you are asked to a) Find the points where.
9/11/2015PHY 752 Fall Lecture 81 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 103 Plan for Lecture 8: Reading: Chap. 2 in GGGPP; Conclude brief.
1/26/2015PHY 7r2 Spring Lecture 51 PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 5: Reading: Chapter 7.3 in MPM; Brief.
Extension of the Poincare` Group and Non-Abelian Tensor Gauge Fields George Savvidy Demokritos National Research Center Athens Extension of the Poincare’
Sites used:
} } Lagrangian formulation of the Klein Gordon equation
Summary of the Last Lecture This is our second lecture. In our first lecture, we discussed The vector spaces briefly and proved some basic inequalities.
COMPUTING GLOBAL DIMENSIONS OF ENDOMORPHISM RINGS OVER MODULES OF FINITE COHEN-MACAULAY TYPE Brandon Doherty Supervisor: Dr. Colin Ingalls.
Pre-Calculus Section 8.1A Sequences and Series. Chapter 8: Sequences, Series, and Probability Sequences and series describe algebraic patterns. We will.
Florian Girelli 2. General construction of DSR 3. Exploring the physics of DSR 1. DSR: phenomenology of QG.
Chapter 1: Outcomes, Events, and Sample Spaces men 1.
Relativistic Quantum Mechanics Lecture 1 Books Recommended:  Lectures on Quantum Field Theory by Ashok Das  Advanced Quantum Mechanics by Schwabl  Relativistic.
Level 2 Certificate Further Mathematics 8360 Route Map
Geometric Algebra 9. Unification Dr Chris Doran ARM Research.
Vectors and the Geometry
Quantum Field Theory (PH-537) M.Sc Physics 4th Semester
Unruh’s Effect Savan Kharel.
Complete Math Skills Review for Science and Mathematics
Equivalence, Invariants, and Symmetry Chapter 2
Lagrange Formalism & Gauge Theories
Unit Vectors AP Physics.
Takaaki Nomura(Saitama univ)
Examples of point groups and their characters – more details
PHY 745 Group Theory 11-11:50 AM MWF Olin 102 Plan for Lecture 36:
Representation Theory
Fundamental principles of particle physics
Finsler引力研究现状 重庆大学 李昕 2016年8月 合肥.
Equivalence, Invariants, and Symmetry
Construction of a relativistic field theory
Chapter 7 Applications of Lie Groups to Differential Equations
Introduction to linear Lie groups
Differential Manifolds and Tensors
علم الرياضيات وأهميته للعلوم
Canonical Quantization
Review of topics in group theory
Introduction to linear Lie groups
Introduction to linear Lie groups Examples – SO(3) and SU(2)
Gelfand Pairs A. Aizenbud and D. Gourevitch the non compact case
Chapter II Klein Gordan Field Lecture 5.
Linear Algebra Lecture 3.
University of Saskatchewan
Back to Cone Motivation: From the proof of Affine Minkowski, we can see that if we know generators of a polyhedral cone, they can be used to describe.
Nonlocally Related PDE Systems
Physics 451/551 Theoretical Mechanics
UNITARY REPRESENTATIONS OF THE POINCARE GROUP
11. Space Inversion Invariance
Conservation Theorems Section 7.9
A Portrait of a Group on a Surface with Boundary
6D Standing Wave Braneworld
Domain wall solitions and Hopf algebraic translational symmetries
Presentation transcript:

Geometric application of non-compact 𝑮 𝟐 group Ivane Javakhishvili Tbilisi State University Faculty of Exact and Natural Sciences Geometric application of non-compact 𝑮 𝟐 group Presenter: Alexandre Gurchumelia Master's supervisor: Merab Gogberashvili

Lie algebras in physics Conservation Laws Symmetries Groups Lie Algebras Noether's theorem 𝑞 𝛼 𝑒 𝑋∈𝔤 exp 𝛼𝑋 ∈𝐺

Classification of Lie algebras (with Dynkin diagrams) Infinite families Exceptional cases 𝐴 𝑛 𝐺 2 𝐵 𝑛 𝐹 4 𝐶 𝑛 𝐸 6 𝐷 𝑛 Notation 𝐴 𝑛 =𝑆𝑈 𝑛+1 , 𝐶 𝑛 =𝑆𝑝 2𝑛 , 𝐵 𝑛 =𝑆𝑂 2𝑛+1 , 𝐷 𝑛 =𝑆𝑂 2𝑛 , 𝒏 is rank 𝐸 7 𝐸 8

Something wrong with Poincare groups? Planck length isn’t supposed to Lorentz contract No division algebra in 3+1 D to describe transformations Why non-compact 𝑮 𝟐 ? 𝐺 2 is automorphism group for octonions Non-compact transformations give us boosts

Non-compact 𝑮 𝟐 group ( 𝑮 𝟐 𝑵𝑪 ) Generators 𝑋 𝑛𝑛 =− 𝑧 𝑛 𝜕 𝜕 𝑧 𝑛 + 𝑦 𝑛 𝜕 𝜕 𝑦 𝑛 + 1 3 𝑧 𝑚 𝜕 𝜕 𝑧 𝑚 − 𝑦 𝑚 𝜕 𝜕 𝑦 𝑚 𝑋 0𝑚 =−2𝑡 𝜕 𝜕 𝑦 𝑚 + 𝑧 𝑚 𝜕 𝜕𝑡 + 1 2 𝜖 𝑚𝑝𝑗 𝑦 𝑝 𝜕 𝜕 𝑧 𝑗 − 𝑦 𝑗 𝜕 𝜕 𝑧 𝑝 𝑋 𝑚𝑛 =− 𝑧 𝑛 𝜕 𝜕 𝑧 𝑚 + 𝑦 𝑚 𝜕 𝜕 𝑦 𝑛 𝑋 11 + 𝑋 22 + 𝑋 33 =0 (𝑚,𝑛=1,2,3) Metric: Space: 𝑝 𝑇 = 𝑦 𝑛 ,𝑡, 𝑧 𝑛 𝑔= 1 2 1 3×3 2 1 3×3 Quadratic form: 𝑝 𝑇 𝑔𝑝= 𝑡 2 + 𝑦 𝑛 𝑧 𝑛

7-dimensional equivalent representation Minkowski-like metric Cartan Ours Coordinates: 𝑝= 𝑦 𝑛 𝑡 𝑧 𝑛 𝓅= 𝜆 𝑛 𝑡 𝑥 𝑛 Metric: 𝑔= 1 2 1 3×3 2 1 3×3 ℊ= 1 3×3 1 − 1 3×3 Quadratic form: 𝑝 𝑇 𝑔𝑝= 𝑡 2 + 𝑦 𝑛 𝑧 𝑛 𝓅 𝑇 ℊ𝓅= 𝜆 𝑛 𝜆 𝑛 + 𝑡 2 − 𝑥 𝑛 𝑥 𝑛 𝑦 𝑛 = 𝜆 𝑛 + 𝑥 𝑛 𝑧 𝑛 = 𝜆 𝑛 − 𝑥 𝑛

Change of basis Same quadratic form 𝓈 2 = 𝜆 𝑛 𝜆 𝑛 + 𝑡 2 − 𝑥 𝑛 𝑥 𝑛 𝓈 2 = 𝜆 𝑛 𝜆 𝑛 + 𝑡 2 − 𝑥 𝑛 𝑥 𝑛 Change of basis Generators 𝑇 𝑛 = 𝒳 0𝑛 − 𝒳 𝑛0 =−2 𝑥 𝑛 𝜕 𝜕𝑡 +𝑡 𝜕 𝜕 𝑥 𝑛 − 1 2 𝜖 𝑛𝑞𝑖 𝜆 𝑞 𝜕 𝜕 𝑥 𝑖 − 𝜆 𝑖 𝜕 𝜕 𝑥 𝑞 − 𝑥 𝑞 𝜕 𝜕 𝜆 𝑖 − 𝑥 𝑖 𝜕 𝜕 𝜆 𝑞 𝐹 𝑛 =− 𝒳 0𝑘 + 𝒳 𝑘0 =−2 𝜆 𝑛 𝜕 𝜕𝑡 −𝑡 𝜕 𝜕 𝜆 𝑛 − 1 2 𝜖 𝑛𝑞𝑖 𝜆 𝑞 𝜕 𝜕 𝜆 𝑖 − 𝜆 𝑖 𝜕 𝜕 𝜆 𝑞 − 𝑥 𝑞 𝜕 𝜕 𝑥 𝑖 − 𝑥 𝑖 𝜕 𝜕 𝑥 𝑞 𝐺 𝑘 = 𝜖 𝑘𝑚𝑛 𝒳 𝑚𝑛 = 1 2 𝜖 𝑘𝑛𝑚 𝑥 𝑛 𝜕 𝜕 𝜆 𝑚 + 𝑥 𝑚 𝜕 𝜕 𝜆 𝑛 + 𝜆 𝑛 𝜕 𝜕 𝑥 𝑚 + 𝜆 𝑚 𝜕 𝜕 𝑥 𝑛 𝑅 𝑘 = 𝜖 𝑘𝑚𝑛 𝒳 𝑚𝑛 = 1 2 𝜖 𝑘𝑛𝑚 𝜆 𝑛 𝜕 𝜕 𝜆 𝑚 − 𝜆 𝑚 𝜕 𝜕 𝜆 𝑛 + 𝑥 𝑛 𝜕 𝜕 𝑥 𝑚 − 𝑥 𝑚 𝜕 𝜕 𝑥 𝑛 Φ 𝑛 = 𝒳 𝑘𝑘 = 𝑥 𝑛 𝜕 𝜕 𝜆 𝑛 + 𝜆 𝑛 𝜕 𝜕 𝑥 𝑛 − 1 3 𝑥 𝑚 𝜕 𝜕 𝜆 𝑚 + 𝜆 𝑚 𝜕 𝜕 𝑥 𝑚

𝑮 𝟐 𝑵𝑪 group transformations in the new basis Infinitesimal transformations 𝜆 𝑘 ′ = 𝜆 𝑘 + 𝜖 𝑘𝑚𝑛 𝜙 𝑚 − 𝜌 𝑚 𝜆 𝑛 −2 𝜙 𝑘 𝑡− 𝜖 𝑘𝑚𝑛 𝜃 𝑚 + 𝜖 𝑘𝑚𝑛 𝛾 𝑚 𝑥 𝑛 − 𝛽 𝑘 𝑥 𝑘 𝑡 ′ =𝑡+2 𝜙 𝑚 𝜆 𝑚 + 𝜃 𝑚 𝑥 𝑚 𝑥′ 𝑘 = 𝑥 𝑘 + 𝜖 𝑘𝑚𝑛 𝜃 𝑚 − 𝜖 𝑘𝑚𝑛 𝛾 𝑚 𝜆 𝑛 +2 𝜃 𝑘 𝑡− 𝜖 𝑘𝑚𝑛 𝜙 𝑚 + 𝜌 𝑚 𝑥 𝑛 − 𝛽 𝑘 𝜆 𝑘 Finite transformation example exp 𝜌 3 𝑅 3 𝓅= cos 𝜌 3 sin 𝜌 3 0 0 0 0 0 − sin 𝜌 3 cos 𝜌 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 cos 𝜌 3 sin 𝜌 3 0 0 0 0 0 − sin 𝜌 3 cos 𝜌 3 0 0 0 0 0 0 0 1 𝜆 1 𝜆 2 𝜆 3 𝑡 𝑥 1 𝑥 2 𝑥 3

𝑮 𝟐 𝑵𝑪 group transformations in the new basis Infinitesimal transformations 𝜆 𝑘 ′ = 𝜆 𝑘 + 𝜖 𝑘𝑚𝑛 𝜙 𝑚 − 𝜌 𝑚 𝜆 𝑛 −2 𝜙 𝑘 𝑡− 𝜖 𝑘𝑚𝑛 𝜃 𝑚 + 𝜖 𝑘𝑚𝑛 𝛾 𝑚 𝑥 𝑛 − 𝛽 𝑘 𝑥 𝑘 𝑡 ′ =𝑡+2 𝜙 𝑚 𝜆 𝑚 + 𝜃 𝑚 𝑥 𝑚 𝑥′ 𝑘 = 𝑥 𝑘 + 𝜖 𝑘𝑚𝑛 𝜃 𝑚 − 𝜖 𝑘𝑚𝑛 𝛾 𝑚 𝜆 𝑛 +2 𝜃 𝑘 𝑡− 𝜖 𝑘𝑚𝑛 𝜙 𝑚 + 𝜌 𝑚 𝑥 𝑛 − 𝛽 𝑘 𝜆 𝑘 Finite transformation example exp 𝜃 1 𝑇 1 𝓅= 1 0 0 0 0 0 0 0 ch 𝜃 1 0 0 0 0 sh 𝜃 1 0 0 ch 𝜃 1 0 0 − sh 𝜃 1 0 0 0 0 ch 2 𝜃 1 sh 2 𝜃 1 0 0 0 0 0 sh 2 𝜃 1 ch 2 𝜃 1 0 0 0 0 − sh 𝜃 1 0 0 ch 𝜃 1 0 0 sh 𝜃 1 0 0 0 0 ch 𝜃 1 𝜆 1 𝜆 2 𝜆 3 𝑡 𝑥 1 𝑥 2 𝑥 3

Casimir Operators 𝐒𝐎 𝟑 𝐿 2 = 𝐿 𝑥 2 + 𝐿 𝑦 2 + 𝐿 𝑧 2 𝐿 2 𝜓= ℓ ℓ+1 𝜓 𝐿 2 𝜓= ℓ ℓ+1 𝜓 𝜓= 𝑌 ℓ𝑚 𝜃,𝜙 Poincaré group 𝑃 𝜇 𝑃 𝜇 = 𝜕 𝑡 2 − 𝛻 2 𝜕 𝑡 2 − 𝛻 2 𝜓= 𝑚 2 𝜓 𝑊 𝜇 = 1 2 𝜖 𝜇𝜈𝜌𝜎 𝑀 𝜈𝜌 𝑃 𝜎 𝑊 𝜇 𝑊 𝜇 𝜓=− 𝑚 2 𝑠 𝑠+1 𝜓 𝑮 𝟐 𝑵𝑪 2nd order casimir 6th order In Cartan’s basis: 𝐶 2 =2 𝑋 𝑚𝑛 𝑋 𝑛𝑚 − 2 3 𝑋 𝑘0 𝑋 0𝑘 + 𝑋 0𝑘 𝑋 𝑘0 𝐶 6 =… Our basis: 𝒞 2 = 𝑘 1 3 𝑇 𝑘 2 − 1 3 𝐹 𝑘 2 + 𝐺 𝑘 2 − 𝑅 𝑘 2 +2 Φ 𝑘 2 …

2nd order Casimir of 𝔤 𝟐 algebra Neglecting change in 𝝀 𝑑𝜆 𝑘 =0 Quadratic form 𝓈 2 = 𝜆 𝑛 𝜆 𝑛 + 𝑡 2 − 𝑥 𝑛 𝑥 𝑛 𝒞 2 =6𝑡 𝜕 𝜕𝑡 − 𝓈 2 − 𝑡 2 𝜕 2 𝜕 𝑡 2 + 𝑘 𝓈 2 + 𝑥 𝑘 2 𝜕 2 𝜕 𝑥 𝑘 2 − 𝓈 2 − 𝜆 𝑘 2 𝜕 2 𝜕 𝜆 𝑘 2 +6 𝜆 𝑘 𝜕 𝜕 𝜆 𝑘 + 𝑥 𝑘 𝜕 𝜕 𝑥 𝑘 +2𝑡 𝑥 𝑘 𝜕 𝜕 𝑥 𝑘 + 𝜆 𝑘 𝜕 𝜕 𝜆 𝑘 𝜕 𝜕𝑡 + 𝑚 𝑛 1+ 𝛿 𝑚𝑛 𝜆 𝑚 𝑥 𝑛 𝜕 2 𝜕 𝜆 𝑚 𝜕 𝑥 𝑛 + 𝜖 𝑘𝑚𝑛 𝑥 𝑚 𝑥 𝑛 𝜕 2 𝜕 𝑥 𝑚 𝜕 𝑥 𝑛 + 𝜆 𝑚 𝜆 𝑛 𝜕 2 𝜕 𝜆 𝑚 𝜕 𝜆 𝑛 +2𝑡 𝑥 𝑘 𝜕 𝜕 𝑥 𝑘 + 𝜆 𝑘 𝜕 𝜕 𝜆 𝑘 𝜕 𝜕𝑡 𝑘 𝓈 2 + 𝑥 𝑘 2 𝜕 2 𝜕 𝑥 𝑘 2 − 𝓈 2 − 𝜆 𝑘 2 𝜕 2 𝜕 𝜆 𝑘 2 +6 𝜆 𝑘 𝜕 𝜕 𝜆 𝑘 + 𝑥 𝑘 𝜕 𝜕 𝑥 𝑘 +2𝑡 𝑥 𝑘 𝜕 𝜕 𝑥 𝑘 + 𝜆 𝑘 𝜕 𝜕 𝜆 𝑘 𝜕 𝜕𝑡 + 𝑚 𝑛 1+ 𝛿 𝑚𝑛 𝜆 𝑚 𝑥 𝑛 𝜕 2 𝜕 𝜆 𝑚 𝜕 𝑥 𝑛 + 𝜖 𝑘𝑚𝑛 𝑥 𝑚 𝑥 𝑛 𝜕 2 𝜕 𝑥 𝑚 𝜕 𝑥 𝑛 + 𝜆 𝑚 𝜆 𝑛 𝜕 2 𝜕 𝜆 𝑚 𝜕 𝜆 𝑛

Comparing Casimir operators 2nd order Casimir of 𝔤 𝟐 in 4-vector notation 𝒞 2 =− 𝝀 𝒏 𝝀 𝒏 𝜂 𝜇𝜈 𝜕 𝜇 𝜕 𝜈 − 𝑥 𝜇 𝑥 𝜇 𝜕 𝜈 𝜕 𝜈 + 𝑥 𝜇 𝑥 𝜇 𝜕 𝜇 𝜕 𝜇 +2 𝑥 𝜇 𝜕 𝜇 + 𝜎 𝜖 𝜎𝜇𝜈 𝑥 𝜇 𝑥 𝜈 𝜕 𝜇 𝜕 𝜈 𝒞 2 = 𝝀 𝟐 𝑃 𝜇 𝑃 𝜇 − 1 𝑚 2 𝑊 𝜇 𝑊 𝜇 Poincaré group 𝑃 𝜇 𝑃 𝜇 = 𝜕 𝑡 2 − 𝛻 2 𝑊 𝜇 𝑊 𝜇 𝑊 𝜇 = 1 2 𝜖 𝜇𝜈𝜌𝜎 𝑀 𝜈𝜌 𝑃 𝜎

Summary & further research Thank you! Summary & further research 𝐺 2 𝑁𝐶 contains Lorentz transformtions with some corrections[1] Casimir found and expressed in terms of Poincare group casimirs Next step: construct field theory with 𝐺 2 𝑁𝐶 symmetry Reference [1] Gogberashvili M, Sakhelashvili O, (2015). Geometrical Applications of Split Octonions; Hindawi Publishing Corporation: Adv. Math. Phys. p.196708; doi: 10.1155/2015/196708