Volume 16, Issue 6, Pages (December 2014)

Slides:



Advertisements
Similar presentations
Human Gut Microbes Use Multiple Transporters to Distinguish Vitamin B12 Analogs and Compete in the Gut Patrick H. Degnan, Natasha A. Barry, Kenny C. Mok,
Advertisements

Volume 2, Issue 2, Pages (August 2007)
CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses  Hong-Mei Yuan, Wen-Cheng Liu, Ying-Tang.
Volume 26, Issue 4, Pages e4 (October 2017)
Volume 14, Issue 5, Pages (February 2016)
Scott J. Bultman, Christian Jobin  Cell Host & Microbe 
Volume 12, Issue 3, Pages (September 2012)
Volume 43, Issue 4, Pages (October 2015)
Volume 15, Issue 1, Pages (January 2014)
Volume 11, Issue 3, Pages (March 2012)
Volume 17, Issue 2, Pages (February 2015)
Volume 21, Issue 1, Pages (January 2017)
Volume 14, Issue 5, Pages (November 2013)
Volume 21, Issue 4, Pages e4 (April 2017)
Volume 20, Issue 7, Pages (August 2017)
Antibiotic Exposure Promotes Fat Gain
Volume 17, Issue 6, Pages (June 2015)
Volume 6, Issue 2, Pages (August 2009)
Volume 8, Issue 6, Pages (December 2010)
Dirk Hofreuter, Veronica Novik, Jorge E. Galán  Cell Host & Microbe 
Volume 144, Issue 5, Pages (May 2013)
Volume 18, Issue 1, Pages (July 2015)
Volume 18, Issue 3, Pages (September 2015)
Immunological Consequences of Intestinal Fungal Dysbiosis
Volume 14, Issue 1, Pages (July 2013)
Volume 4, Issue 4, Pages (October 2008)
Volume 17, Issue 5, Pages (May 2015)
Volume 16, Issue 6, Pages (December 2014)
Intestinal Alkaline Phosphatase Detoxifies Lipopolysaccharide and Prevents Inflammation in Zebrafish in Response to the Gut Microbiota  Jennifer M. Bates,
Volume 17, Issue 5, Pages (May 2015)
Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source  Steven J. Siegel, Aoife M. Roche,
Volume 21, Issue 8, Pages (August 2014)
Volume 20, Issue 4, Pages (October 2016)
Volume 22, Issue 6, Pages e3 (December 2017)
Volume 10, Issue 11, Pages (March 2015)
Volume 22, Issue 6, Pages e4 (December 2017)
Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates  Erica D. Sonnenburg, Justin L. Sonnenburg 
Volume 21, Issue 2, Pages (February 2017)
A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing
Volume 40, Issue 2, Pages (February 2014)
Volume 22, Issue 3, Pages e6 (September 2017)
Volume 21, Issue 5, Pages e4 (May 2017)
Volume 23, Issue 1, Pages e4 (January 2018)
Volume 11, Issue 6, Pages (June 2012)
Volume 10, Issue 5, Pages (November 2011)
Volume 20, Issue 6, Pages (December 2016)
Volume 21, Issue 6, Pages e3 (June 2017)
Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source  Steven J. Siegel, Aoife M. Roche,
Volume 14, Issue 2, Pages (August 2013)
Volume 17, Issue 5, Pages (May 2015)
Volume 18, Issue 6, Pages (December 2015)
A Major Role for Capsule-Independent Phagocytosis-Inhibitory Mechanisms in Mammalian Infection by Cryptococcus neoformans  Cheryl D. Chun, Jessica C.S.
CATALASE2 Coordinates SA-Mediated Repression of Both Auxin Accumulation and JA Biosynthesis in Plant Defenses  Hong-Mei Yuan, Wen-Cheng Liu, Ying-Tang.
Gut Microbes Take Their Vitamins
Volume 2, Issue 2, Pages (August 2007)
Herpes Simplex Virus Encephalitis: Toll-Free Access to the Brain
Volume 26, Issue 13, Pages e6 (March 2019)
Quorum Sensing Attenuates Virulence in Sodalis praecaptivus
Dirk Hofreuter, Veronica Novik, Jorge E. Galán  Cell Host & Microbe 
Volume 11, Issue 4, Pages (April 2015)
Volume 7, Issue 5, Pages (May 2010)
Volume 2, Issue 4, Pages (October 2007)
Volume 23, Issue 2, Pages e4 (February 2018)
Volume 10, Issue 2, Pages (August 2011)
Volume 64, Issue 5, Pages (December 2016)
Michael U. Shiloh, Paolo Manzanillo, Jeffery S. Cox 
Volume 16, Issue 6, Pages (December 2014)
Volume 19, Issue 1, Pages (January 2016)
Volume 24, Issue 1, Pages e6 (July 2018)
Volume 25, Issue 6, Pages e5 (June 2019)
Presentation transcript:

Volume 16, Issue 6, Pages 770-777 (December 2014) Gut Microbiota-Produced Succinate Promotes C. difficile Infection after Antibiotic Treatment or Motility Disturbance  Jessica A. Ferreyra, Katherine J. Wu, Andrew J. Hryckowian, Donna M. Bouley, Bart C. Weimer, Justin L. Sonnenburg  Cell Host & Microbe  Volume 16, Issue 6, Pages 770-777 (December 2014) DOI: 10.1016/j.chom.2014.11.003 Copyright © 2014 Elsevier Inc. Terms and Conditions

Cell Host & Microbe 2014 16, 770-777DOI: (10.1016/j.chom.2014.11.003) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Metabolic Strategies Employed by C. difficile in Response to a Human Gut Commensal (A) C. difficile density in feces at 1 day postinfection of GF (Cd) or Bt-associated mice (Cd + Bt) and fed standard diet (Std diet) or polysaccharide-deficient diet (Pd diet) (n = 4 per group). Error bars represent SD. (B) C. difficile catabolic pathways with significant differences in gene expression levels in vivo in the presence and absence of Bt. Mice were fed standard diet (Std) or polysaccharide-deficient diet (Pd). Colors indicate the deviation of each gene’s signal above (purple) and below (green) its mean (black) expression value across all sixteen in vivo samples (n = 4 per group) at 5 days postinfection in cecal contents. Fold change values correspond to gene expression in the Bt-biassociation relative to the monoassociation state. (C) Concentration of the SCFA butyrate in cecal contents of standard diet-fed mice colonized with Bt, C. difficile and Bt (Cd + Bt), or C. difficile (Cd) at 5 days postinfection (n = 4 per group). Error bars represent SD. Cell Host & Microbe 2014 16, 770-777DOI: (10.1016/j.chom.2014.11.003) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 A C. difficile Operon Encodes Succinate-to-Butyrate Conversion (A) Growth of WT C. difficile (Cd) and CD2344 mutant C. difficile (Cd-CD2344−) in MM containing 1% glucose (left), water (center), or 0.1% succinate (right). OD600 measurements were taken every 30 min (n = 3 per group). Representative of at least three replicates. (B) Concentrations of butyrate produced after growth of Cd or Cd-CD2344− in MM containing 0.5% glucose (MM + glucose) or 0.1% succinate (MM + succinate) (n = 3 per group). Error bars represent SD. (C) Concentrations of succinate remaining after growth of Cd or Cd-CD2344− in MM containing 0.5% glucose (MM + glucose) or 0.1% succinate (MM + succinate) (n = 3 per group). Error bars represent SD. (D) Levels of 13C-butyrate produced by Cd or Cd-CD2344− in MM containing 0.5% glucose (MM + glucose) or 0.1% 13C-succinate (MM + succinate) (n = 3 per group). Error bars represent SD. (E) Levels of 13C-succinate remaining after growth of Cd or Cd-CD2344− in minimal media containing 0.5% glucose (MM + glucose) or 0.1% 13C-succinate (MM + succinate) (n = 3 per group). Error bars represent SD. Cell Host & Microbe 2014 16, 770-777DOI: (10.1016/j.chom.2014.11.003) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 C. difficile Consumes the Bt Fermentation Product Succinate to Expand in the Intestinal Ecosystem (A) C. difficile density in feces at 2 days postinfection of GF mice fed a standard diet (Std) or polysaccharide-deficient diet (Pd), supplemented with water containing 1% sorbitol (Sor), 1% succinate (Suc), or both 1% sorbitol and 1% succinate (Sor + Suc) (n = 5 per group). ∗∗∗∗ indicates statistical significance at an alpha value of <0.05 by one-way ANOVA with Bonferroni multiple comparisons test. Error bars represent SD. (B) C. difficile density in feces of GF mice consuming polysaccharide-deficient diet and infected with WT C. difficile (Cd) or Cd-CD2344− mutant C. difficile (Cd-CD2344−) and administered water (−) or water containing 1% sorbitol and 1% succinate (+) at 1 day postinfection (n = 5 per group). Error bars represent SD. (C) C. difficile density in feces of Bt-associated mice infected with WT C. difficile (Bt + Cd) or Cd-CD2344− mutant C. difficile (Bt + Cd-CD2344−) at day 1 postinfection and under standard dietary conditions (n = 5 per group). Error bars represent SD. (D) Concentration of butyrate in cecal contents of Bt-associated mice infected with WT C. difficile (Cd) or Cd-CD2344− mutant C. difficile (Cd-CD2344−) at day 3 postinfection and under standard dietary conditions (n = 5 per group). Error bars represent SD. Cell Host & Microbe 2014 16, 770-777DOI: (10.1016/j.chom.2014.11.003) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 C. difficile Exploits a Spike in Succinate Availability after Microbiota Perturbations (A) Concentrations of acetate, butyrate, propionate, lactate, and succinate detected in cecal contents of streptomycin-treated conventional mice before treatment (Conv) and 3 days after antibiotic treatment (Abx) (n = 5 per group). Error bars represent SD. (B) DNA of WT C. difficile (Cd) versus Cd-CD2344− mutant C. difficile (Cd-CD2344−) in feces of conventional mice treated with antibiotics (Abx) or PEG 3 days after infection with a 1:1 mixture of the two strains (n = 5 per group). ∗p < 0.05, one-sample t test versus a theoretical mean of 1.0. Error bars represent SD. (C) C. difficile density in feces of conventional (Conv) or PEG-treated mice infected with WT C. difficile at day 3 postinfection (n = 5 in Conv and n = 4 in PEG). The dotted line represents the detection limit. Error bars represent SD. (D) Concentrations of acetate, butyrate, propionate, lactate, and succinate detected in cecal contents of PEG-treated conventional mice before treatment (Conv) and 3 days after treatment (PEG) (n = 5 per group). Error bars represent SD. Cell Host & Microbe 2014 16, 770-777DOI: (10.1016/j.chom.2014.11.003) Copyright © 2014 Elsevier Inc. Terms and Conditions