Aliza Khurram, Mingfu He, Betar M. Gallant  Joule 

Slides:



Advertisements
Similar presentations
A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents  Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,
Advertisements

Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/27/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Volume 1, Issue 2, Pages (October 2017)
Volume 2, Issue 2, Pages (February 2018)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
The Expanding Energy Prospects of Metal Organic Frameworks
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways
Uwe Schröder, Falk Harnisch  Joule 
Volume 1, Issue 2, Pages (October 2017)
Synthesis and Solution Processing of a Hydrogen-Bonded Ladder Polymer
Lithium Metal Extraction from Seawater
Volume 1, Issue 1, Pages (September 2017)
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 2, Pages (February 2018)
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Lithium Metal Anodes: A Recipe for Protection
Volume 1, Issue 1, Pages (September 2017)
Volume 26, Issue 7, Pages (April 2016)
Volume 1, Issue 4, Pages (December 2017)
Electrochemical Energy Storage with Mediator-Ion Solid Electrolytes
The Case against Carbon Prices
Volume 1, Issue 2, Pages (August 2016)
Volume 2, Issue 1, Pages (January 2018)
Volume 1, Issue 4, Pages (December 2017)
Cycling Li-O2 batteries via LiOH formation and decomposition
A Process for Capturing CO2 from the Atmosphere
Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways
Wei-Ran Huang, Zhen He, Jin-Long Wang, Jian-Wei Liu, Shu-Hong Yu 
Volume 2, Issue 1, Pages (January 2018)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
High-Energy Li Metal Battery with Lithiated Host
Volume 2, Issue 3, Pages (March 2018)
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 3, Pages (March 2018)
Volume 4, Issue 2, Pages (February 2018)
Volume 2, Issue 1, Pages (January 2018)
Volume 3, Issue 2, Pages (February 2019)
Interphase Engineering Enabled All-Ceramic Lithium Battery
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Volume 1, Issue 4, Pages (December 2017)
Xiaoqiao Zeng, Chun Zhan, Jun Lu, Khalil Amine  Chem 
Volume 1, Issue 2, Pages (October 2017)
Volume 4, Issue 2, Pages (February 2018)
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Chao Luo, Xiulin Fan, Zhaohui Ma, Tao Gao, Chunsheng Wang  Chem 
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 11, Pages (November 2018)
Volume 2, Issue 3, Pages (March 2018)
Jiarui He, Yuanfu Chen, Arumugam Manthiram
Volume 4, Issue 3, Pages (March 2018)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction
Xingwen Yu, Arumugam Manthiram
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 1, Issue 2, Pages (October 2017)
Volume 19, Pages (September 2019)
Solution-Deposited Solid-State Electrochromic Windows
Infrared Light-Driven CO2 Overall Splitting at Room Temperature
Cycling Li-O2 batteries via LiOH formation and decomposition
Anode-Electrolyte Interfaces in Secondary Magnesium Batteries
Room-Temperature Conversion of Methane Becomes True
Presentation transcript:

Tailoring the Discharge Reaction in Li-CO2 Batteries through Incorporation of CO2 Capture Chemistry  Aliza Khurram, Mingfu He, Betar M. Gallant  Joule  Volume 2, Issue 12, Pages 2649-2666 (December 2018) DOI: 10.1016/j.joule.2018.09.002 Copyright © 2018 Elsevier Inc. Terms and Conditions

Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 1 Cell Schematic and Reaction Scheme of a CO2 Capture-and-Electrochemical Conversion Process (A) Schematic of a combined capture and conversion Li-CO2 cell with amine regeneration. (B) Discharge reaction scheme showing the target reduction pathway via selective cleavage of the N-C bond. Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 2 State of Amine-Containing Solvents upon CO2 Uptake with and without Electrolyte Co-Salts Solvent samples containing 0.1 M CO2-loaded EEA species (top row) and the same solutions upon introduction of 0.3 M LiClO4 (bottom row). Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 3 Characterization of Amine-Containing DMSO before and after CO2 Uptake 1H NMR spectra of 50 mM lean EEA (bottom) and CO2-loaded EEA (top) in DMSO-d6. Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 4 Characterization of Temporal Evolution of Carbamic Acid-Carbamate Equilibria upon Electrolyte Salt Addition (A) Time-dependent 1H NMR spectra of a solution containing 50 mM CO2-bound EEA in DMSO-d6 before the addition of 0.3 M LiClO4 (a), and 1 hr (b), 9 hr (c), and 24 hr (d) after the addition of 0.3 M LiClO4. (B) Reaction scheme showing conversion of carbamic acid to carbamate and a free CO2 upon Li+-salt addition in DMSO. Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 5 Homogeneous Reduction of CO2-Loaded EEA by a Redox Mediator (CoCp2) (A) UV-visible spectra of 0.3 M LiClO4/DMSO containing CoCp2 and EEA in the presence and absence of CO2. The spectra of CoCp2 and CoCp2+ are provided as reference. (B) Photograph showing color changes upon addition of CoCp2 to the electrolyte containing either lean EEA (right) or CO2-loaded EEA (center). A solution containing CoCp2 and the electrolyte, not shown, yielded a color identical to the one observed for CoCp2 with lean EEA. Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 6 Discharge Performance of Li-CO2 Cells Containing CO2-Loaded EEA at Varying Rates and Amine Concentrations (A) Discharge profiles of Li-CO2 cells at 10 mA/gc under Ar only, CO2 only (physically dissolved, no EEA), lean EEA (unloaded, no CO2) in DMSO, and loaded EEA-CO2 in DMSO. (B) Discharge profiles for cells containing 100 mM EEA-CO2 at varying current densities. (C and D) Concentration effect of EEA-CO2 on discharge potential (C) and capacities (D) for Li-CO2 cells discharged at 30 mA/gc. Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions

Figure 7 Characterization of Discharge Products and Evidence for Process Selectivity (A) X-ray diffraction of a GDL electrode discharged at 5.65 μA/cm2. The XRD spectrum of crystalline Li2CO3, acquired from the International Center for Diffraction Data database (ref. code: 00-001-0996), is provided as a reference. (B) SEM images of a Vulcan carbon cathode discharged at 30 mA/gc. The inset shows an SEM image of a pristine electrode (same scale bar). (C) Attenuated total reflectance infrared (transmittance) spectra of a pristine electrode, and an electrode discharged at 30 mA/gc. (D) Ex situ mass spectrometer analysis measuring moles of CO2 evolved after discharged electrode treatment with H3PO4 and Fenton's reagent.69 The discharged Li-CO2 cell contained 13CO2 and a 12C cathode. Joule 2018 2, 2649-2666DOI: (10.1016/j.joule.2018.09.002) Copyright © 2018 Elsevier Inc. Terms and Conditions