1-2 Vocabulary coordinate distance length construction between

Slides:



Advertisements
Similar presentations
Chapter 1.2 Using Segments and Congruence
Advertisements

Warm Up Simplify – (–3) 2. –1 – (–13) 3. |–7 – 1|
Warm Up Find the values of y by substituting x = 2, 3, y = 3x-1 2. y = 4(x+3) 3. y = 8(x+4) + x(8+x)
Chapter measuring and constructing segments
Warm Up Simplify. 1.7 – (–3)2. –1 – (–13)3. |–7 – 1| Solve each equation. 4. 2x + 3 = 9x – x = 4x – 5 6. How many numbers are there between and ?
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Postulates and Paragraph Proofs
Postulates and Paragraph Proofs
1.1 Exit Ticket: Part 1 Answers
Geometry 1.2: Segments and Congruence SWLT: Use segment postulates to identify congruent segments.
+ Objective: to measure segments and add segment lengths DO NOW: EVALUATE. Plot each point on a coordinate plane. 1.I -15 I 2.I 7 I 3.I I 4.I -12-(-2)
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Holt McDougal Geometry 1-2 Measuring and Constructing Segments Drill: Tuesday, 9/3 Simplify. 1. –1 – (–13) 2. |–7 – 1| Solve each equation. 3. 2x + 3 =
1-3 Measuring and Constructing Segments Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Objectives Use length and midpoint of a segment.
1.3 Segments and Their Measures
1.2 Measuring and Constructing Segments
1-2 Measuring and Constructing Segments Lesson Presentation
Lesson 1.2, For use with pages Solve 3x x – 4 = 36. ANSWER 7 2. Find three cities on this map that appear to be collinear. Chicago, Bloomington,
1) plane BCD, plane BED, or plane ECD 1) plane BCD, plane BED, or plane ECD 2) BD, BC, BE, or BE 2) BD, BC, BE, or BE 3) EC, BC, or BE 3) EC, BC, or BE.
Use the diagram to find GH.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Geometry CH 1-3 Measuring angles and Segments End of Lecture / Start of Lecture mark.
Success Criteria:  I can use number operations to find and compare lengths  I can use the ruler and segment addition postulate to reason about length.
F RIDAY, A UGUST 8 TH Complete warm up on separate sheet of paper 1. 2x + 3 = 9x – x = 4x – 5.
WARM UP Simplify 1.7 – (–3) 1.–1 – (–13) 2. |–7 – 1| Solve each equation. 4. 2x + 3 = 9x – x = 4x – 5 6. How many numbers are there between and ?
Warm-up Open your books to page 11 –Look through the bold face terms in sec. 1.3 –Look at the diagrams that go with each term You will need to be ready.
1-3 Segments, Rays, and Distance
David Vundi Mathematics Teacher Use Segments and Congruence GEOMETRY.
Holt McDougal Geometry 1-2 Measuring and Constructing Segments 1-2 Measuring and Constructing Segments Holt Geometry Warm Up Warm Up Lesson Presentation.
Warm – up True / false : If false, explain why
Warm – up True / false : If false, explain why
Do Now: Using the picture below, decide whether the statements are true or false.
1.2 – Use Segments and Congruence
1.3 Segments & Their Measures.
1-2 Use Segments and Congruence
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Measuring and Constructing Segments
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Use segments and congruence
WARM UP 1.5 On desk!.
Drill: Friday 8/ What are parallel lines?
Points, Lines, and Planes
Section 1.2 – Use Segments and Congruence
1.2 – Use Segments and Congruence
Warm – up True / false : If false, explain why
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Chapter 1: Tools of Geometry
Drill: Tuesday, 9/6 Simplify – (–3) 2. –1 – (–13) 3. |–7 – 1|
Splash Screen.
Drill: Tuesday, 9/3 Simplify. 1. –1 – (–13) 2. |–7 – 1|
1-2 Measuring and Constructing Segments Are You Ready?
Objectives Use length and midpoint of a segment.
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Warm Up Solve each equation. 1. 2x – 6 = 7x – /4 x – 6 = 220
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
1-2 Measuring and Constructing Segments Warm Up Lesson Presentation
Section 1.3 Segments and Their Measures
Measuring Segments Skill 03.
Chapter 1 Section 2 Measuring and Constructing Segments
Use Segments and Congruence & Midpoints
Chapter 1 Basics of Geometry.
Objectives Use length and midpoint of a segment.
1-6 Midpoint and Distance in the Coordinate Plane Warm Up
1.3 Segments and Their Measures
Understanding Points, 1-1 Lines, and Planes Warm Up
Presentation transcript:

1-2 Vocabulary coordinate distance length construction between congruent segments

FOUR BUILDING BLOCKS OF GEOMETRY Undefined Terms Point, Line Plane Definitions (Defined Terms) Definitions are always “reversible” Postulates Statements accepted as true Theorems Statements formed with deductive reasoning – can be proven

A ruler can be used to measure the distance between two points A ruler can be used to measure the distance between two points. A point corresponds to one and only one number on a ruler. The number is called a coordinate. The following postulate summarizes this concept.

The distance between any two points is the absolute value of the difference of the coordinates. If the coordinates of points A and B are a and b, then the distance between A and B is |a – b| or |b – a|. The distance between A and B is also called the length of AB, or AB. AB = |a – b| or |b - a| A a B b

Example 1: Finding the Length of a Segment Find each length. A. BC B. AC BC = |1 – 3| AC = = |1 – 3| = = 2 =

Congruent segments are segments that have the same length Congruent segments are segments that have the same length. In the diagram, PQ = RS, so you can write PQ  RS. This is read as “segment PQ is congruent to segment RS.” Tick marks are used in a figure to show congruent segments.  then = OR = then 

In order for you to say that a point B is between two points A and C, all three points must lie on the same line, and AB + BC = AC.

Example 3A: Using the Segment Addition Postulate G is between F and H, FG = 6, and FH = 11. Find GH. FH = FG + GH Seg. Add. Postulate 11 = 6 + GH Substitute 6 for FG and 11 for FH. – 6 –6 Subtract 6 from both sides. 5 = GH Simplify.

Example 3B: Using the Segment Addition Postulate M is between N and O. Find NO.

Lesson Quiz: 1. M is between N and O. MO = 15, and MN = 7.6. Find NO. 2. Tell whether the statements below are sometimes, always, or never true. a. If M is between K and L, then M, K, and L are collinear. b. If two segments ae congruent then they have the same length. 3. Discussion (Classroom Demonstration): Sketch, Draw and Construct a Segment 4. Know vocabulary!