C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M

Slides:



Advertisements
Similar presentations
Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced.
Advertisements

The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
CCN family 2/connective tissue growth factor (CCN2/CTGF) stimulates proliferation and differentiation of auricular chondrocytes  T. Fujisawa, Ph.D., D.D.S.,
Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC- derived chondrocytes  R.S. Rainbow, H. Kwon, A.T. Foote, R.C. Preda, D.L.
Insulin-like growth factor-1 boosts the developing process of condylar hyperplasia by stimulating chondrocytes proliferation  Y. Chen, J. Ke, X. Long,
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced.
Nociceptive phenotype alterations of dorsal root ganglia neurons innervating the subchondral bone in osteoarthritic rat knee joints  K. Aso, M. Izumi,
Dysregulated circadian rhythm pathway in human osteoarthritis: NR1D1 and BMAL1 suppression alters TGF-β signaling in chondrocytes  R. Akagi, Y. Akatsu,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Nociceptive phenotype alterations of dorsal root ganglia neurons innervating the subchondral bone in osteoarthritic rat knee joints  K. Aso, M. Izumi,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro  L. Rackwitz, F. Djouad, S.
BMP activation and Wnt-signalling affect biochemistry and functional biomechanical properties of cartilage tissue engineering constructs  A. Krase, R.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation  U. Freymann, M. Endres,
Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix  A. Gigout, H. Guehring, D. Froemel, A. Meurer, C. Ladel,
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
M. E. R. van Meegeren, G. Roosendaal, N. W. D. Jansen, M. J. G
Reduced chondrocyte proliferation, earlier cell cycle exit and increased apoptosis in neuronal nitric oxide synthase-deficient mice  Q. Yan, Q. Feng,
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo  A.I. Chou, S.O. Akintoye, S.B. Nicoll  Osteoarthritis.
Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes  Simon R.
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Methylation of the OP-1 promoter: potential role in the age-related decline in OP-1 expression in cartilage  R.F. Loeser, M.D., H.-J. Im, Ph.D., B. Richardson,
Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture  A.
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
M. Cucchiarini, H. Madry, E.F. Terwilliger 
Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,
M. A. Cleary, R. Narcisi, K. Focke, R. van der Linden, P. A. J
Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications 
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds  G. Feng, L. Li, H.
Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress  L Lippiello  Osteoarthritis.
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells  M.E. Casper, J.S. Fitzsimmons, J.J.
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Identification of molecular markers for articular cartilage
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
Tissue engineering with meniscus cells derived from surgical debris
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes1 1 Supported by IsoTis S.A.  J. Malda, Ph.D., C.A.
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
Cartilage degeneration in different human joints
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site  L.A. Vonk, T.S. de Windt, A.H.M.
Presentation transcript:

Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair?  C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M. Jakob, V. Valderrabano, A. Barbero, I. Martin  Osteoarthritis and Cartilage  Volume 18, Issue 8, Pages 1067-1076 (August 2010) DOI: 10.1016/j.joca.2010.04.010 Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Histological appearance of detached fragments of OCLs of ankle joints (DACF) and NAC. Safranin-O (A, B), Von Kossa/Safranin-O staining (B), type II collagen and type I collagen immunohistochemical staining (A) of DACF harvested from two different, representative donors: donor 3 (I) and donor 5 (II) (see Table I for the donor information) and of NAC harvested from a cadaveric joint of a young individual (male, 32 years) (III). Bar=100μm. Arrows indicate cartilage/bone interface, asterisks show cell clusters, h=hyaline or hyaline-like cartilage, f=fibrocartilage, c=calcified cartilage. Osteoarthritis and Cartilage 2010 18, 1067-1076DOI: (10.1016/j.joca.2010.04.010) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Growth and differentiation stage of chondrocytes isolated from DACF and NAC. (A) Representative phase-contrast pictures of expanded DACF-chondrocytes (I) and NAC-chondrocytes (II) (see Table I for the donor information). Bar=100μm. (B) Proliferation rate of DACF- and NAC-chondrocytes. Values are the mean of measurements obtained from six different DACF or 10 different NAC; error bars represent the uncertainty with a 95%CI. (C) Real-time reverse transcriptase-polymerase chain reaction analysis of the expression of mRNA for type I (CI) and type II (CII) collagens (left y-axis labeling) or the CII/CI ratio (right y-axis labeling). Values are the mean of measurements obtained from four different DACF or four different NAC; error bars represent the uncertainty with a 95%CI. Osteoarthritis and Cartilage 2010 18, 1067-1076DOI: (10.1016/j.joca.2010.04.010) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Differentiation capacity of chondrocytes isolated from DACF and NAC in pellets. (A) Safranin-O stainings of representative pellets generated by DACF-chondrocytes harvested from two different donors: donor 3 (I), donor 5 (II) (see Table I for the donor information) and NAC-chondrocytes harvested from a cadaveric joint of a young individual (male, 32 years) (III) Bar=100μm. (B) Sulfate GAG content normalized to the amount of DNA in pellets. Values are the mean of triplicate pellets; error bars describe observed variations. The plotted lines indicate mean values measured in pellets generated by cells from NAC (upper line, 10 donors) or DACF (bottom line, six donors). (C) Type II collagen immunohistochemical stainings of representative pellets generated by DACF-chondrocytes harvested from two different donors: donor 2 (I), donor 3 (II) and NAC-chondrocytes harvested from a cadaveric joint of a young individual (male, 32 years) (III). Osteoarthritis and Cartilage 2010 18, 1067-1076DOI: (10.1016/j.joca.2010.04.010) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Differentiation capacity of chondrocytes isolated from DACF and NAC in HYAFF-11® scaffold. Safranin-O stainings (A) and type II collagen immunohistochemical stainings (B) of representative constructs generated by DACF-chondrocytes harvested from two different donors [donor 3 (I), donor 5 (II) (see Table I for the donor information)] and NAC-chondrocytes harvested from a cadaveric joint of a young individual (male, 32 years) (III) cultured in CHM for 28 days. Bar=100μm. h=hyaline-like cartilage, f=fibrocartilage (C) Amounts of sulfate GAG, type I collagen and type II collagen accumulated in constructs generated by DACF-chondrocytes (white bars, six donors) and NAC-chondrocytes (gray bars, 10 donors) expressed as a percentage of tissue dry weight; error bars represent the uncertainty with a 95%CI. (D) Equilibrium modulus and dynamic pulsatile modulus of constructs generated by DACF-chondrocytes (white bars, six donors) and NAC-chondrocytes (gray bars, 10 donors); error bars represent the uncertainty with a 95%CI. Osteoarthritis and Cartilage 2010 18, 1067-1076DOI: (10.1016/j.joca.2010.04.010) Copyright © 2010 Osteoarthritis Research Society International Terms and Conditions