Basilio Bona DAUIN – Politecnico di Torino

Slides:



Advertisements
Similar presentations
COMP Robotics: An Introduction
Advertisements

ICRA 2005 – Barcelona, April 2005Basilio Bona – DAUIN – Politecnico di TorinoPage 1 Identification of Industrial Robot Parameters for Advanced Model-Based.
Inverse Kinematics Professor Nicola Ferrier ME 2246,
Outline: Introduction Link Description Link-Connection Description
Manipulator Dynamics Amirkabir University of Technology Computer Engineering & Information Technology Department.
Introduction to ROBOTICS
Animation Following “Advanced Animation and Rendering Techniques” (chapter 15+16) By Agata Przybyszewska.
Trajectory Generation
CSCE 641: Forward kinematics and inverse kinematics Jinxiang Chai.
Rational Trigonometry Applied to Robotics
The City College of New York 1 Dr. Jizhong Xiao Department of Electrical Engineering City College of New York Kinematics of Robot Manipulator.
Trajectory Week 8. Learning Outcomes By the end of week 8 session, students will trajectory of industrial robots.
Ch. 7: Dynamics.
CSCE 641: Forward kinematics and inverse kinematics Jinxiang Chai.
BINARY MORPHOLOGY and APPLICATIONS IN ROBOTICS. Applications of Minkowski Sum 1.Minkowski addition plays a central role in mathematical morphology 2.It.
CSCE 689: Forward Kinematics and Inverse Kinematics
Chapter 5: Path Planning Hadi Moradi. Motivation Need to choose a path for the end effector that avoids collisions and singularities Collisions are easy.
Inverse Kinematics Jacobian Matrix Trajectory Planning
Introduction to ROBOTICS
More details and examples on robot arms and kinematics
Definition of an Industrial Robot
Chapter 5 Trajectory Planning 5.1 INTRODUCTION In this chapters …….  Path and trajectory planning means the way that a robot is moved from one location.
Chapter 5 Trajectory Planning 5.1 INTRODUCTION In this chapters …….  Path and trajectory planning means the way that a robot is moved from one location.
T. Bajd, M. Mihelj, J. Lenarčič, A. Stanovnik, M. Munih, Robotics, Springer, 2010 ROBOT CONTROL T. Bajd and M. Mihelj.
1 Fundamentals of Robotics Linking perception to action 2. Motion of Rigid Bodies 南台科技大學電機工程系謝銘原.
Manipulator’s Forward kinematics
Review: Differential Kinematics
Chapter 7: Trajectory Generation Faculty of Engineering - Mechanical Engineering Department ROBOTICS Outline: 1.
Just a quick reminder with another example
ROBOT VISION LABORATORY 김 형 석 Robot Applications-B
Chapter 3 Differential Motions and Velocities
City College of New York 1 Dr. John (Jizhong) Xiao Department of Electrical Engineering City College of New York Review for Midterm.
ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino.
ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino.
Manipulation Umashankar Nagarajan. Rotation 2/28/2013Umashankar Nagarajan2 Z A Y A X A Z B Y B X B.
COMP322/S2000/L111 Inverse Kinematics Given the tool configuration (orientation R w and position p w ) in the world coordinate within the work envelope,
ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino.
Basilio Bona DAUIN – Politecnico di Torino
ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino.
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, 11-12:30a 160 Robotic Concepts.
Basilio Bona DAUIN – Politecnico di Torino
Robotics Chapter 3 – Forward Kinematics
Kinematics 제어시스템 이론 및 실습 조현우
CSCE 441: Computer Graphics Forward/Inverse kinematics
Trajectory Generation
Computer Animation Algorithms and Techniques
INVERSE MANIPULATOR KINEMATICS
Basilio Bona DAUIN – Politecnico di Torino
Basilio Bona DAUIN – Politecnico di Torino
Basilio Bona DAUIN – Politecnico di Torino
Direct Manipulator Kinematics
Modeling robot systems
Accurate Robot Positioning using Corrective Learning
Zaid H. Rashid Supervisor Dr. Hassan M. Alwan
Special English for Industrial Robot
Kinematics of a Rigid Body: Basic Concepts
CSCE 441: Computer Graphics Forward/Inverse kinematics
2-DOF Manipulator Now, given the joint angles Ө1, Ө2 we can determine the end effecter coordinates x and y.
Inverse Kinematics 12/30/2018.
Robot Kinematics We know that a set of “joint angles” can be used to locate and orientate the hand in 3-D space We know that the joint angles can be combined.
KINEMATIC CHAINS.
Basilio Bona DAUIN – Politecnico di Torino
KINEMATIC CHAINS & ROBOTS (I)
Outline: Introduction Solvability Manipulator subspace when n<6
Chapter 2 Mathematical Analysis for Kinematics
Special English for Industrial Robot
Chapter 4 . Trajectory planning and Inverse kinematics
Chapter 3. Kinematic analysis
Robotics 1 Copyright Martin P. Aalund, Ph.D.
Model of robot system Óbuda University
Presentation transcript:

Basilio Bona DAUIN – Politecnico di Torino 24/02/2019 ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino di 23

24/02/2019 Trajectory Planning 2 di 23

Planning of the task space variables 24/02/2019 Planning of the task space variables Not all motions are planned in the joint space Very often the planning takes place in the task (cartesian) space, since it is more convenient for the operator This happens when a particular geometric profile must be followed (as in the case of continuous welding or glue deposition, etc. ) or when obstacles in the task space must be avoided Once the cartesian targets are determined, the inverse kinematics function must be invoked, in order to provide joint reference to the control algorithm Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016 di 23

Inverse Kinematics Convex Combination Inverse Kinematics Profile Generator Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Task space planning In the following slides we will consider only the cartesian position planning Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Task space planning: the position variables The task space position planning starts with the formal definition of the required trajectory The trajectory can be associated to a time law: e.g., it may be necessary to do a certain path with a prescribed velocity (in such tasks as continuous welding, glue deposition, etc.) When the task requires an interaction with the environment, as in manipulation, deburring, or other tasks where the TCP is subject to external forces, it is necessary to plan the position and the force at the same time. This case will not be treated here Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Task space planning: the position variables Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Task space planning: the position variables Case 1 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Task space planning: the position variables Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Task space planning: the position variables Case 2 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Example: arc in the plane Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Example: arc in the plane Discrete time where Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Example: simple arc in the plane angle Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Example: another arc in the plane Clockwise angle Anti-clockwise angle Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Orientation planning – 1 Orientation is defined by a rotation matrix; during the planning phase it must always remain an orthonormal matrix with positive unit determinant Hence it is wrong to plan the orientation as since Other methods must be used; the most common are three Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Orientation planning – 1 Axis –angle representation: one parameter is planned Planar sliding: two parameters are planned Euler angles: three parameters are planned Initial data common to the three approaches: Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 1: axis-angle Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 1: axis-angle Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 1: axis-angle axis u = -0.5774 theta = 120.0000 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Do not confuse k with k Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 2: planar sliding Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 3: Euler angles Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 3: Euler angles Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Method 3: Euler angles axis u= -0.5774 0.5774 Delta_eul = 180 90 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Axis-angle vs Euler comparison Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Axis-angle vs Euler comparison This is the third planned reference frame Axis-angle Euler Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Characteristics of the methods Axis –angle: is simple to implement and gives a moderately good geometrical insight in the movement performed by the robot Planar sliding: is the most complex, but provides the best geometrical insight Euler angles: is the most simple, but suffers of poor geometrical insight Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Inverse kinematics Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Inverse kinematics Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Actuators constraints Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Actuators constraints Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Micro-macro interpolation Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Micro-macro interpolation Example Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016

Micro-macro interpolation Zoom Errors True values Approximate values Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW - 2015/2016