Volume 22, Issue 3, Pages (March 2012)

Slides:



Advertisements
Similar presentations
L. Nikitina, F. Wenger, M. Baumann, D. Surbek, M. Körner, C. Albrecht 
Advertisements

by Ben Van Handel, Sacha L
Volume 9, Issue 2, Pages (August 2005)
Izumi Onitsuka, Minoru Tanaka, Atsushi Miyajima  Gastroenterology 
The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b  Yuanyuan Xue, Junhua Lv, Chunxia Zhang, Lu.
Volume 5, Issue 4, Pages (November 2013)
Volume 16, Issue 5, Pages (May 2009)
Volume 29, Issue 1, Pages (April 2014)
Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels by Norio Suzuki, Naruyoshi Suwabe, Osamu.
Lacy J. Barton, Belinda S. Pinto, Lori L. Wallrath, Pamela K. Geyer 
Volume 23, Issue 3, Pages (September 2012)
Volume 16, Issue 3, Pages (March 2009)
Volume 8, Issue 1, Pages (January 2005)
Volume 29, Issue 1, Pages (April 2014)
Volume 6, Issue 4, Pages (April 2010)
Volume 10, Issue 3, Pages (March 2006)
Katrin Ottersbach, Elaine Dzierzak  Developmental Cell 
The Placenta Is a Niche for Hematopoietic Stem Cells
Volume 59, Issue 4, Pages (August 2008)
Volume 29, Issue 4, Pages (May 2014)
Ciara Metcalfe, Noelyn M. Kljavin, Ryan Ybarra, Frederic J. de Sauvage 
Volume 2, Issue 3, Pages (March 2008)
Activin-βA Signaling Is Required for Zebrafish Fin Regeneration
Volume 23, Issue 2, Pages (August 2012)
Dedifferentiating Spermatogonia Outcompete Somatic Stem Cells for Niche Occupancy in the Drosophila Testis  X. Rebecca Sheng, Crista M. Brawley, Erika.
Wenqian Hu, Bingbing Yuan, Harvey F. Lodish  Developmental Cell 
Volume 11, Issue 4, Pages (October 2006)
Jianjun Sun, Wu-Min Deng  Developmental Cell 
Volume 36, Issue 2, Pages (January 2016)
Volume 28, Issue 4, Pages (February 2014)
Volume 4, Issue 3, Pages (March 2015)
EB3 Regulates Microtubule Dynamics at the Cell Cortex and Is Required for Myoblast Elongation and Fusion  Anne Straube, Andreas Merdes  Current Biology 
DFezf/Earmuff Maintains the Restricted Developmental Potential of Intermediate Neural Progenitors in Drosophila  Mo Weng, Krista L. Golden, Cheng-Yu Lee 
Volume 27, Issue 5, Pages (December 2013)
Senescence of Activated Stellate Cells Limits Liver Fibrosis
Control of Cell Proliferation in the Drosophila Eye by Notch Signaling
Volume 12, Issue 4, Pages (April 2007)
Volume 21, Issue 6, Pages (December 2011)
Volume 22, Issue 2, Pages (February 2012)
Volume 25, Issue 3, Pages (May 2013)
Volume 23, Issue 2, Pages (August 2012)
Myeloma cell–derived Runx2 promotes myeloma progression in bone
Volume 158, Issue 4, Pages (August 2014)
Volume 17, Issue 9, Pages (November 2016)
Volume 7, Issue 1, Pages (January 2008)
Jin Wan, Rajesh Ramachandran, Daniel Goldman  Developmental Cell 
Volume 41, Issue 4, Pages (October 2014)
Volume 3, Issue 6, Pages (December 2008)
Volume 6, Issue 4, Pages (April 2010)
Volume 20, Issue 3, Pages (March 2011)
NO Signals from the Cancer Stem Cell Niche
Volume 8, Issue 6, Pages (June 2017)
Nicola Iovino, Filippo Ciabrelli, Giacomo Cavalli  Developmental Cell 
Drosophila ASPP Regulates C-Terminal Src Kinase Activity
Polarity Determinants Tea1p, Tea4p, and Pom1p Inhibit Division-Septum Assembly at Cell Ends in Fission Yeast  Yinyi Huang, Ting Gang Chew, Wanzhong Ge,
Xuepei Lei, Jianwei Jiao  Stem Cell Reports 
Epigenetic Regulation of Stem Cell Maintenance in the Drosophila Testis via the Nucleosome-Remodeling Factor NURF  Christopher M. Cherry, Erika L. Matunis 
Twist1 regulates embryonic hematopoietic differentiation through binding to Myb and Gata2 promoter regions by Kasem Kulkeaw, Tomoko Inoue, Tadafumi Iino,
Volume 16, Issue 1, Pages (January 2015)
Haploinsufficiency at the Nkx3.1 locus
Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7  Jun Wei Pek, Ai Khim Lim, Toshie Kai  Developmental.
Volume 15, Issue 6, Pages (December 2008)
Volume 11, Issue 5, Pages (November 2018)
Volume 16, Issue 4, Pages (April 2009)
FGF9 Suppresses Meiosis and Promotes Male Germ Cell Fate in Mice
Volume 21, Issue 9, Pages (November 2017)
Epigenetic Regulation of Stem Cell Maintenance in the Drosophila Testis via the Nucleosome-Remodeling Factor NURF  Christopher M. Cherry, Erika L. Matunis 
Volume 33, Issue 1, Pages (April 2015)
Volume 16, Issue 2, Pages (February 2015)
Volume 26, Issue 13, Pages e5 (March 2019)
Presentation transcript:

Volume 22, Issue 3, Pages 651-659 (March 2012) Trophoblasts Regulate the Placental Hematopoietic Niche through PDGF-B Signaling  Akanksha Chhabra, Andrew J. Lechner, Masaya Ueno, Asha Acharya, Ben Van Handel, Yanling Wang, M. Luisa Iruela-Arispe, Michelle D. Tallquist, Hanna K.A. Mikkola  Developmental Cell  Volume 22, Issue 3, Pages 651-659 (March 2012) DOI: 10.1016/j.devcel.2011.12.022 Copyright © 2012 Elsevier Inc. Terms and Conditions

Developmental Cell 2012 22, 651-659DOI: (10.1016/j.devcel.2011.12.022) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 1 Pdgf-b−/− Embryos Support Ectopic Erythropoiesis in Placental Labyrinth Vasculature during Midgestation (A) IHC for CD31 (endothelium) and cytokeratin (trophoblasts) documents progressive dilation of the labyrinth vasculature (arrows) in Pdgf-b−/− placentas at E13.5–E18.5. Scale bar, 100 μm. (B) H&E reveals clusters of blast-like cells in Pdgf-b−/− placental vasculature at E13.5–E18.5 (arrows, insets). Scale bar, 100 μm. (C) IHC shows that majority of the blast cells (arrow, inset) in Pdgf-b−/− placentas do not express β-H1 globin (primitive RBCs, arrowhead), but express c-Kit (HSPCs). Dlk marks placental vasculature. IF shows coexpression of c-Kit and Ter119 (erythroid cells) in the blasts (arrow). Scale bars, 50 μm. (D) IHC for Ki-67 (proliferation) and cytokeratin implies that the blast cells (arrow, inset) in Pdgf-b−/− placentas are actively cycling. Scale bar, 50 μm. (E) Bright-field image of CFU-Es. Increase in CFU-Es is observed in Pdgf-b−/− placentas compared to controls. Error bars represent SEM (n = 6 for each genotype; ∗∗p < 0.005). (F) IF for F4/80 identifies macrophages within the blast cell clusters (DAPI) in Pdgf-b−/− placental vasculature (CD31) (arrow). Scale bar, 50 μm. See also Figure S1. Developmental Cell 2012 22, 651-659DOI: (10.1016/j.devcel.2011.12.022) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 2 Loss of PDGF-B Promotes Proliferation of Erythroid Precursors Specifically in the Placenta (A) MGG staining shows proerythroblasts and basophilic erythroblasts (arrows) in Pdgf-b−/− placenta and blood. (B) Electron microscopy (magnification 2,900×) documents similar morphology of the erythroblasts (arrow) in Pdgf-b−/− placentas as in normal fetal liver (arrow). (C) FACS after 1 hr BrdU incorporation shows increase in BrdU+CD71+ erythroblasts only in placentas of E14.5 Pdgf-b−/− embryos. Representative examples from three experiments are shown; error bars represent SEM (n = 6 for each genotype). IF for BrdU, CD31 (endothelium), and DAPI (nuclei) verifies proliferation of the blast cells in placental vasculature (arrow, inset). Scale bar, 50 μm. See also Figure S2. Developmental Cell 2012 22, 651-659DOI: (10.1016/j.devcel.2011.12.022) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 3 Erythropoiesis in Pdgf-b−/− Placentas Is Not due to Intrinsic Requirement for PDGF-B Signaling in Hematopoietic Cells (A) H&E shows the presence of clusters of blast cells (arrow, inset) in E14.5 Pdgfrβ−/− placentas, but not in Tie2Cre Pdgfrβfl/fl placentas. IHC for Ki-67 indicates active proliferation of blast cells (arrow, inset) in Pdgfrβ−/− placental vasculature (Dlk). Scale bar, 100 μm. (B) FACS analysis shows an increase in BrdU+CD71+ erythroblasts in Pdgfrβ−/− placentas, but not in Tie2Cre Pdgfrβfl/fl placentas. Representative examples from three experiments are shown; error bars represent SEM (n = 5 for each genotype; ∗∗p < 0.005). IF for BrdU, DAPI (nuclei), and CD31 (endothelium) verifies the presence of clusters of proliferative blast cells in placental vasculature in Pdgfrβ−/− (arrow, inset) but not Tie2Cre Pdgfrβfl/fl embryos. Scale bar, 50 μm. (C) Significant increase in CFU-Es is seen in Pdgfrβ−/− but not Tie2Cre Pdgfrβfl/fl placentas (n = 3 for each genotype). Error bars represent SEM (∗∗p < 0.005). See also Figure S3. Developmental Cell 2012 22, 651-659DOI: (10.1016/j.devcel.2011.12.022) Copyright © 2012 Elsevier Inc. Terms and Conditions

Figure 4 Loss of PDGF-B Signaling in Trophoblasts Induces Epo Overexpression, which Promotes Ectopic Erythropoiesis (A) IF for Epo, cytokeratin (trophoblasts), and DAPI (nuclei) (insets) documents upregulation of Epo in S-TGCs (arrows) in Pdgf-b−/− placentas. Scale bar, 50 μm. (B) IF for PDGFRβ, PDGF-B, cytokeratin, CD34 (endothelium), and DAPI (insets) in E15.5 wild-type (WT) placentas reveals PDGFRβ expression in S-TGCs (arrows), whereas PDGF-B is expressed in the endothelium (asterisks). Scale bar, 50 μm. (C) RT-PCR verifies knockdown of PDGFRβ in BeWo trophoblast cells. Error bars represent SEM. Representative example from three experiments is shown (n = 9 for each vector; ∗∗p < 0.005). (D) ELISA for hEPO documents significant increase in hEPO secretion per cell in shPDGFRβ BeWo cells after 48 hr in culture. Error bars represent SEM. Representative example from two experiments is shown (n = 6 for each vector; ∗∗p < 0.005). (E) H&E for placentas overexpressing hEPO in the trophoblasts (EPO OE) shows clusters of blast cells (green arrows, insets). IHC shows the absence of β-H1 globin (primitive RBCs, arrowheads), but presence of Ter119 (yellow arrows, insets) expression in the blast cells (arrows, insets). IHC for Ki67 indicates proliferation of the blasts (red arrows, insets) in placental vasculature (Dlk). F4/80 identifies macrophages (asterisks, insets) in the blast cell clusters. Scale bar, 100 μm. (F) Model for function of PDGF-B signaling in regulating Epo secretion from placental trophoblasts. PDGF-B from the endothelium (bright pink) activates PDGFRβ on trophoblasts (brown) and maintains Epo at basal levels. In the absence of PDGF-B signaling, placental trophoblasts upregulate Epo, which alters the placental hematopoietic niche and induces ectopic definitive erythropoiesis (dark purple/light pink) in association with macrophages (light blue). X indicates absence of PDGF-B signaling. See also Figure S4. Developmental Cell 2012 22, 651-659DOI: (10.1016/j.devcel.2011.12.022) Copyright © 2012 Elsevier Inc. Terms and Conditions