I.1 Diffraction Stack Modeling 1. Forward modeling operator L d(x) = (x |x’) m(x’) dx’ ò Model Space G model data Integral Equation:
Forward Modeling 2-way time
Forward Modeling: Sum of Weighted Hyperbolas 2-way time
iw|x-x’|/c G(x|x’) = e |x-x’| |x-x’| x x’ GREEN’s FUNCTION Phase Geom. Spread x |x-x’| x’
+ O( ) iw|x-x’|/c G(x|x’) = e |x-x’| x x’ ASYMPTOTIC GREEN’s FUNCTION xx’ + O( ) -1 e iw|x-x’|/c Phase G(x|x’) = |x-x’| Geom. Spread A(x,x’) x xx’ x’
e R(x’) G(x|x’) = ASYMPTOTIC GREEN’s FUNCTION i xx’ x’ A(x,x’) reflectivity x’ G(x|x’) = A(x,x’)
Diffraction Stack Modeling = ZO Modeling 1-way time
Diffraction Stack Modeling = ZO Modeling 2-way time Dipping Reflector
Diffraction Stack Modeling = ZO Modeling If c for DS is ½ that for ZO Modeling 1-way time
~ ~ e e (t- ) R(x’) d(x) = F d(x) F ASYMPTOTIC GREEN’s FUNCTION xx’ i ~ e R(x’) reflectivity d(x) = x’ A(x,x’) Fourier Transform: xx’ i e (t- ) F ~ d(x) F x’ R(x’) A(x,x’) (t- ) xx’
( - t) e d (t- ) i t + + + QUICK REVIEW FOURIER TRANSFORM xx’ i e (t- ) d ( - t) Cos( t ) t + Cos( 2 t ) + Cos( 3 t ) + Cos( 4 t ) constructive reinforcement @ t=0 cancellation (t)
d(x,t) = Forward Modeling Operator (t- ) (t- ) R(x’) x’ time Spray energy along hyperbolas A(x,x’) Sum over reflectivity (t- ) xx’
d(x,t) = Forward Modeling Operator (t- ) R(x’) W x’ A(x,x’) time CANCELLATION REINFORCE
ò R(x’) d(x,t) = SUMMARY W (t- ) d(x) = (x |x’) m(x’) dx’ G x’ Exploding Reflector Modeling = Diffraction Stack Modeling Single scattering approximation (i.e., Born) x’ W (t- ) xx’ R(x’) d(x,t) = Source wavelet Sum over reflectors reflectivity Data variables A(x,x’) Geom. spreading d(x) = (x |x’) m(x’) dx’ ò Model Space G model data Integral Equation: 2. High Frequency Approximation (i.e c(x) variations > 3* ) 3. Approximates Kinematics of ZO Sections, but not Dynamics
d(x,t|x’,0) = MATLAB Exercise: Forward Modeling W (t- ) R(x’) 1. To account for the source wavelet W(t), we convolve data with W(t) (recall (t- )*W(t)= W() ) so that modeling equation becomes (neglect A) W (t- ) xx’ d(x,t|x’,0) = x’ R(x’) A). Execute MATLAB program forw.m to generate synthetic data for a point scatterer and a 30 Hz wavelet. B). Execute MATLAB program forwl.m to generate synthetic data for a dipping layer model C). Execute MATLAB program forw.m to generate synthetic data for a syncline model. Note diffractions and multiple arrivals. Adjust for new models. Why the second time derivative?
{ d(x,t) = MATLAB Exercise: Forward Modeling W (t- ) R(x’) x’ Loop over x in model Loop over z in model Loop over traces Traveltime for ixtrace=1:ntrace; for ixs=istart:iend; for izs=1:nz; r = sqrt((ixtrace*dx-ixs*dx)^2+(izs*dx)^2); time = 1 + round( r/c/dt ); data(ixtrace,time) = migi(ixs,izs)/r + data(ixtrace,time); end; data1(ixtrace,:)=conv2(data(ixtrace,:),rick); R(x’) { * Src Wave