Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) C) 14.75

Slides:



Advertisements
Similar presentations
Introduction Creating equations from context is important since most real-world scenarios do not involve the equations being given. An equation is a mathematical.
Advertisements

Copyright © Cengage Learning. All rights reserved. 5 Integrals.
Solving a System of Equations using Multiplication
Chapter 1 / Whole Numbers and Introduction to Algebra
Copyright © Cengage Learning. All rights reserved. 4 Quadratic Functions.
Copyright © Cengage Learning. All rights reserved. 4 Integrals.
CHAPTER 3 NUMERICAL METHODS
Course Estimating Square Roots 4-6 Estimating Square Roots Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson.
Changing Bases.
Solving Equations. What are we going to do if we have non-zero values for a, b and c but can't factor the left hand side? This will not factor so we will.
Solving Systems of Equations The Beginning of Chapter 7!!!
Objective solve systems of equations using elimination.
Table of Contents Factors and GCF Factoring out GCF's Factoring 4 Term Polynomials Factoring Trinomials x2 + bx + c Factoring Using Special Patterns Factoring.
Solving Quadratic Equations by Factoring
INTEGRALS 5. INTEGRALS In Chapter 3, we used the tangent and velocity problems to introduce the derivative—the central idea in differential calculus.
Copyright © Cengage Learning. All rights reserved.
Pythagorean Theorem MCC8.G.6-8: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems.
Copyright © Cengage Learning. All rights reserved.
Introduction Creating equations from context is important since most real-world scenarios do not involve the equations being given. An equation is a mathematical.
Daily Warmup Solve for x x2+7=43 Ans: x = ±6 64+x2=164
Differential Equations
Exponents & Radicals – Rules for Radicals
Pythagorean Theorem MCC8.G.6-8: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems.
Break even or intersection
Introduction Creating equations from context is important since most real-world scenarios do not involve the equations being given. An equation is a mathematical.
Solving Equations Containing
Find: FR [N] R water d FR R = 20 [m] circular 1.62*107 gate 1.72*107
Pythagorean Theorem Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and.
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: The Lightest I Beam
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Solving Equations Containing
Find: Wcone [lbf] D D = 3 [ft] air SGo = 0.89 d3 SGw= 1.00 oil d2
Pythagorean Theorem.
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: KR,b wave direction αo plan contours view beach db = 15 [ft]
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: ρc [in] from load after 2 years
Find: Fcr [lb/in2] Fcr E = 2.9 * 107 [lb/in2] fy = 36,000 [lb/in2]
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
Pythagorean Theorem MCC8.G.6-8: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems.
Find: λc P P 1[in] fixed y 8 [in] A A’ 14[in] x 1[in] L z z fixed L/2
Find: φcPn [lb] column in compression E = 2.9 * 107 [lb/in2]
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: To [s] ua = 40 [mi/hr] ua F = 30 [mi] d = 15 [hr] F nomogram
Find: F [lbf] in order to keep the gate vertical air F 267 water 293
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Pythagorean Theorem MACC.8.G Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems.
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Pythagorean Theorem MCC8.G.6-8: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems.
Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: co [ft/s] ua = 20 [mi/hr] d = 2 [hr] duration F = 15 [mi]
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: hT Section Section
Find: AreaABCD [acres]
Pythagorean Theorem Chapter 5 Lesson 5.
Question 34.
Scale Drawings – Common Core
Pythagorean Theorem MCC8.G.6-8: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems.
Writing Equations of Lines
Mazen Abualtayef Associate Prof., IUG, Palestine
Presentation transcript:

Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) 11.25 C) 14.75 Find the breaking depth, d b, in feet. [pause] In this problem we are provided --- T = 13 [s]

Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) 11.25 C) 14.75 the unrefracted deepwater wave height, H knot prime, and we are also provided, --- T = 13 [s]

Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) 11.25 C) 14.75 the period of the wave, T. [fin] We are asked to find, d b, --- T = 13 [s]

Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) 11.25 C) 14.75 which is the depth of water which causes the wave to break. [pause] The depth of water, d, --- T = 13 [s]

Find: db [ft] Ho’ db T = 13 [s] Ho’ = 10 [ft] d = db depth breaking equals the breaking depth, d b, when the actual height of the wave, H A, --- depth breaking depth

Find: db [ft] Ho’ db T = 13 [s] Ho’ = 10 [ft] d = db HA = Hb depth equals the breaking height of the wave, H b. [pause] Therefore, we can solve for the breaking depth --- depth breaking actual breaking depth height height

Find: db [ft] Ho’ db T = 13 [s] Ho’ = 10 [ft] d = db HA = Hb depth by guessing values for the depth, --- depth breaking actual breaking depth height height

Find: db [ft] Ho’ db T = 13 [s] Ho’ = 10 [ft] guess d = db HA = Hb d, and then checking, whether or not, the actual height, equals, --- depth breaking actual breaking depth height height

? Find: db [ft] Ho’ db T = 13 [s] Ho’ = 10 [ft] guess d = db HA = Hb the breaking height. [pause] For computational convenience sake, we’ll divide these height terms by, --- depth breaking actual breaking depth height height

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking guess actual height d = db HA Hb the length of the wave, L. [pause] When looking back at the possible solutions, --- height = L L depth breaking depth wavelength

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking actual height HA Hb for the breaking depth, we’ll begin by guessing a depth of 13 feet, height = possible L L breaking wavelength depths

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking d1=13.000 [ft] A) 7.75 B) 11.25 C) 14.75 D) 18.25 height HA Hb for our first iteration, because 2 possible answers are shallower and 2 possible answers are deeper. To enter the table of wave values, --- = possible L L breaking wavelength depths

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking d1=13.000 [ft] A) 7.75 B) 11.25 C) 14.75 D) 18.25 height HA Hb we next need to compute d i over L knot. The letter i simply represents the iteration number, so we’ll change this variable i --- = di L L Lo wavelength

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking d1=13.000 [ft] A) 7.75 B) 11.25 C) 14.75 D) 18.25 height HA Hb to a 1, for our first iteration, and plug in, --- = di L L i=1 Lo wavelength

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking d1=13.000 [ft] A) 7.75 B) 11.25 C) 14.75 D) 18.25 height HA Hb 13 feet, into the numerator. [pause] L knot is computed as g T squared, --- = d1 L L i=1 Lo wavelength

? ? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] breaking d1=13.000 [ft] height HA Hb divided by 2 PI. [pause] After plugging in the known variables, --- = g * T2 d1 L L Lo = 2 * π i=1 Lo wavelength ?

? Find: db [ft] = Ho’ db T = 13 [s] Ho’ = 10 [ft] g=32.16 [ft/s2] breaking d1=13.000 [ft] height HA Hb L knot equals, 865.013 feet. This value of L knot is a constant because variables g, T and PI are all constants. This makes d1 over L knot, --- = g * T2 d1 L L Lo = 2 * π i=1 Lo wavelength Lo = 865.013[ft]

? Find: db [ft] = =0.01503 Ho’ db T = 13 [s] Ho’ = 10 [ft] g=32.16 [ft/s2] breaking d1=13.000 [ft] height HA Hb equal to, 0.01503. With the d over L knot value, --- = g * T2 d1 L L Lo = =0.01503 2 * π Lo wavelength Lo = 865.013[ft]

Find: db [ft] =0.01503 Ho’ db d1=13.000 [ft] Ho’ = 10 [ft] d/Lo d/L d1 we have an entry point into the tables, and we can linearly interpolate, --- d/Lo d/L d1 0.015 0.04964 =0.01503 Lo 0.016 0.05132

Find: db [ft] +0.03 * 0.05132 =0.01503 Ho’ db d1/L = 0.97 * 0.04964 d1=13.000 [ft] +0.03 * 0.05132 Ho’ = 10 [ft] to calculate the values of d1 over L, which equals, --- d/Lo d/L d1 0.015 0.04964 =0.01503 Lo 0.016 0.05132

Find: db [ft] +0.03 * 0.05132 =0.01503 Ho’ db d1/L = 0.97 * 0.04964 d1=13.000 [ft] +0.03 * 0.05132 Ho’ = 10 [ft] d1/L = 0.04969 0.04969. [pause] Next, we’ll compute the wavelength, L, --- d/Lo d/L d1 0.015 0.04964 =0.01503 Lo 0.016 0.05132

Find: db [ft] +0.03 * 0.05132 =0.01503 Ho’ db d1/L = 0.97 * 0.04964 d1=13.000 [ft] +0.03 * 0.05132 Ho’ = 10 [ft] d1/L = 0.04969 by dividing 13 feet, by, the value of ---- d1 d1 L= =0.01503 (d1/L) Lo

Find: db [ft] +0.03 * 0.05132 =0.01503 Ho’ db d1/L = 0.97 * 0.04964 d1=13.000 [ft] +0.03 * 0.05132 Ho’ = 10 [ft] d1/L = 0.04969 0.04969, and the wavelength for this first iteration, equals, --- d1 d1 L= =0.01503 (d1/L) Lo

Find: db [ft] +0.03 * 0.05132 = 261.622 [ft] =0.01503 Ho’ db d1/L = 0.97 * 0.04964 d1=13.000 [ft] +0.03 * 0.05132 Ho’ = 10 [ft] d1/L = 0.04969 261.622 feet. [pause] Since this wavelength depends on the depth, we’ll add a subscript, --- d1 d1 L= = 261.622 [ft] =0.01503 (d1/L) Lo

Find: db [ft] +0.03 * 0.05132 = 261.622 [ft] =0.01503 Ho’ db d1/L = 0.97 * 0.04964 d1=13.000 [ft] +0.03 * 0.05132 Ho’ = 10 [ft] d1/L = 0.04969 1, to signify the first iteration. [pause] Next, we’ll return to the tables, and calculate, --- d1 d1 L1= = 261.622 [ft] =0.01503 (d1/L) Lo

Find: db [ft] =0.01503 Ho’ db d1=13.000 [ft] Ho’ = 10 [ft] L1=261.622 [ft] the hyperbolic tangent of k times d, and, the actual height divided by the unrefracted deepwater height. [pause] This second term, H A over --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] =0.01503 Ho’ db d1=13.000 [ft] shoaling Ho’ = 10 [ft] coefficient L1=261.622 [ft] H knot prime, is sometimes called the shoaling coefficient. [pause] Using linear interpolation, --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] +0.03 * 0.3117 =0.01503 d1=13.000 [ft] Ho’ = 10 [ft] db L1=261.622 [ft] tanh1(k*d)= 0.97 * 0.3022 +0.03 * 0.3117 tanh k d for a depth of 13 feet, equals, --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] +0.03 * 0.3117 =0.01503 d1=13.000 [ft] Ho’ = 10 [ft] db L1=261.622 [ft] tanh1(k*d)= 0.97 * 0.3022 +0.03 * 0.3117 tanh1(k*d)= 0.3025 0.3025. [pause] Similarly, we can compute, --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] +0.03 * 1.288 =0.01503 d1=13.000 [ft] Ho’ = 10 [ft] db L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 0.97 * 1.307 +0.03 * 1.288 H A 1, over, H knot prime, and we get, ---- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] = 1.3064 +0.03 * 1.288 =0.01503 d1=13.000 [ft] Ho’ = 10 [ft] db L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 0.97 * 1.307 +0.03 * 1.288 = 1.3064 1.3064. [pause] Keep in mind, we want to compare --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] =0.01503 HA d1=13.000 [ft] L Ho’ = 10 [ft] L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 the actual height of the wave divided by the wavelength, and the breaking height --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] =0.01503 HA Hb d1=13.000 [ft] L L Ho’ = 10 [ft] L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 of the wave, divided by the wavelength. [pause] We can compute H A over L, for this first iteration, --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] = =0.01503 HA,1 HA,1 Ho’ d1=13.000 [ft] * L1 Ho’ L1 Ho’ = 10 [ft] L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 by using a few of the parameters we already calculated. And H A 1, over L 1, equals, --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] = = 0.04993 =0.01503 HA,1 HA,1 Ho’ d1=13.000 [ft] * L1 Ho’ = 10 [ft] L1=261.622 [ft] HA,1 tanh1(k*d)= 0.3025 = 0.04993 L1 HA,1/Ho’= 1.3064 0.04993. [pause] Next, we can calculate H B 1, --- d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] = 0.142 * tanh1 (k*d) = 0.04993 =0.01503 Hb,1 d1=13.000 [ft] = 0.142 * tanh1 (k*d) L1 Ho’ = 10 [ft] L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 HA,1 divided by L 1, by plugging in tanh 1 K D, we get, --- = 0.04993 L1 d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] = 0.142 * tanh1 (k*d) = 0.04296 = 0.04993 =0.01503 Hb,1 d1=13.000 [ft] = 0.142 * tanh1 (k*d) L1 Ho’ = 10 [ft] L1=261.622 [ft] Hb,1 = 0.04296 tanh1(k*d)= 0.3025 L1 HA,1/Ho’= 1.3064 HA,1 0.04296. [pause] Now we can compare H A over L, --- = 0.04993 L1 d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

Find: db [ft] = 0.142 * tanh1 (k*d) = 0.04296 = 0.04993 =0.01503 Hb,1 d1=13.000 [ft] = 0.142 * tanh1 (k*d) L1 Ho’ = 10 [ft] L1=261.622 [ft] Hb,1 = 0.04296 tanh1(k*d)= 0.3025 L1 HA,1/Ho’= 1.3064 HA,1 and H b over L, for this first iteration. [pause] If H A over L is less than, --- = 0.04993 L1 d/Lo tanh(k*d) HA/Ho’ d1 0.015 0.3022 1.307 =0.01503 Lo 0.016 0.3117 1.288

< Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 HA,1 and H b over L, then wave has not yet broken, --- = 0.04993 L1 tanh(k*d) HA/Ho’ Hb,1 0.3022 1.307 = 0.04296 L1 0.3117 1.288

< Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d > db L1=261.622 [ft] tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 HA,1 and the breaking depth is less than the depth we used for that iteration. In this case, --- = 0.04993 L1 tanh(k*d) HA/Ho’ Hb,1 0.3022 1.307 = 0.04296 L1 0.3117 1.288

< Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 HA,1 we should use a smaller depth, d, in the following iteration. [pause] If H A over L is greater than, --- = 0.04993 L1 tanh(k*d) HA/Ho’ Hb,1 0.3022 1.307 = 0.04296 L1 0.3117 1.288

< > Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA Hb > HA,1/Ho’= 1.3064 if L L HA,1 H b over L, then the wave doesn’t exist because it already broke at a deeper depth of water, --- = 0.04993 L1 tanh(k*d) HA/Ho’ Hb,1 0.3022 1.307 = 0.04296 L1 0.3117 1.288

< > Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA Hb > HA,1/Ho’= 1.3064 if L L HA,1 then d < db and we should guess a larger value for the depth, d, for the following iteration. Once these two heights are equal, --- = 0.04993 L1 use larger d Hb,1 = 0.04296 L1

< > = Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA Hb > HA,1/Ho’= 1.3064 if L L HA,1 then d < db then the depth, d, equals, --- = 0.04993 L1 use larger d Hb,1 HA Hb = 0.04296 = if L1 L L

< > = Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA Hb > HA,1/Ho’= 1.3064 if L L HA,1 then d < db the breaking depth d b. [pause] For our first iteration, the depth of 13 feet resulted in --- = 0.04993 L1 use larger d Hb,1 HA Hb = 0.04296 = if then d = db L1 L L

< > = Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA Hb > HA,1/Ho’= 1.3064 if L L HA,1 then d < db H A over L greater than H b over L, therefore, ---- = 0.04993 L1 use larger d Hb,1 HA Hb = 0.04296 = if then d = db L1 L L

< > = Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d > db L1=261.622 [ft] use smaller d tanh1(k*d)= 0.3025 HA Hb > HA,1/Ho’= 1.3064 if L L HA,1 then d < db we need to select a larger depth, d, for our second iteration. Our second depth is computed using --- = 0.04993 L1 use larger d Hb,1 HA Hb = 0.04296 = if then d = db L1 L L

> Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d < db L1=261.622 [ft] use larger d tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 ( HA,i / Li ) di+1= di * HA,1 ( Hb,i / Li ) the first depth and the values of H A over L and H b over L. For i equal to 1, --- = 0.04993 L1 Hb,1 = 0.04296 L1

> Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d < db L1=261.622 [ft] use larger d tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 ( HA,i / Li ) di+1= di * HA,1 ( Hb,i / Li ) we plug in the appropriate variables, and our next depth, d 2, equals, --- = 0.04993 L1 Hb,1 = 0.04296 L1

> Find: db [ft] = 0.04993 = 0.04296 HA Hb d1=13.000 [ft] if L L Ho’ = 10 [ft] then d < db L1=261.622 [ft] use larger d tanh1(k*d)= 0.3025 HA,1/Ho’= 1.3064 ( HA,i / Li ) di+1= di * HA,1 ( Hb,i / Li ) 15.109 feet. [pause] Next, we’ll begin the second iteration, --- = 0.04993 L1 d2= 15.109 [ft] Hb,1 = 0.04296 L1

Find: db [ft] = ? = ? d2=15.109 [ft] Ho’ = 10 [ft] L2=? tanh2(k*d)= ? HA,2/Ho’= ? HA,2 using a depth of 15.109 feet. [pause] First, we’ll compute d2, divided by, --- = ? L1 Hb,2 = ? L1

Find: db [ft] = ? = ? d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2=? tanh2(k*d)= ? HA,2/Ho’= ? HA,2 L knot. Recall, we computed L knot during the first iteration, --- = ? L1 Hb,2 = ? L1

Find: db [ft] = ? = ? d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2=? Lo = 865.013[ft] tanh2(k*d)= ? HA,2/Ho’= ? HA,2 and after plugging in the known variables, d 2 over L knot, equals, --- = ? L1 Hb,2 = ? L1

Find: db [ft] = 0.01747 = ? = ? d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] Lo = 865.013[ft] tanh2(k*d)= ? HA,2/Ho’= ? HA,2 0.01747. [pause] Next we’ll calculate the value for --- = ? L1 Hb,2 = ? L1

Find: db [ft] = 0.01747 =0.01747 d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] Lo = 865.013[ft] tanh2(k*d)= ? HA,2/Ho’= ? d over L for this second depth, by using linear interpolation between the values of --- d/Lo d/L d2 0.017 0.05296 =0.01747 Lo 0.018 0.05455

Find: db [ft] = 0.01747 +0.47 * 0.05455 =0.01747 d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2=? Lo = 865.013[ft] tanh2(k*d)= ? d2/L = 0.53 * 0.05296 HA,2/Ho’= ? +0.47 * 0.05455 0.017 and 0.018, for d over L knot, we get d 2 over L, equals, --- d/Lo d/L d2 0.017 0.05296 =0.01747 Lo 0.018 0.05455

Find: db [ft] = 0.01747 +0.47 * 0.05455 =0.01747 d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2=? Lo = 865.013[ft] tanh2(k*d)= ? d2/L = 0.53 * 0.05296 HA,2/Ho’= ? +0.47 * 0.05455 d2/L = 0.05370 0.05370. [pause] Again, we’ll add the subscript 2, --- d/Lo d/L d2 0.017 0.05296 =0.01747 Lo 0.018 0.05455

Find: db [ft] = 0.01747 +0.47 * 0.05455 =0.01747 d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2=? Lo = 865.013[ft] tanh2(k*d)= ? d2/L = 0.53 * 0.05296 HA,2/Ho’= ? +0.47 * 0.05455 d2/L2 = 0.05370 since we’re on the second iteration. [pause] And to compute L 2, ---- d/Lo d/L d2 0.017 0.05296 =0.01747 Lo 0.018 0.05455

Find: db [ft] = 0.01747 +0.47 * 0.05455 d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2=? Lo = 865.013[ft] tanh2(k*d)= ? d2/L = 0.53 * 0.05296 HA,2/Ho’= ? +0.47 * 0.05455 d2/L2 = 0.05370 we divide 15.109 feet by 0.05370, and we get, --- d2 L2= (d2/L2)

Find: db [ft] = 0.01747 +0.47 * 0.05455 = 281.359 [ft] d2 d2=15.109 [ft] = 0.01747 Lo Ho’ = 10 [ft] L2= 281.359 [ft] Lo = 865.013[ft] tanh2(k*d)= ? d2/L = 0.53 * 0.05296 HA,2/Ho’= ? +0.47 * 0.05455 d2/L2 = 0.05370 281.359 feet. [pause] Next we’ll compute the hyperbolic tangent of k d, and, --- d2 L2= = 281.359 [ft] (d2/L2)

Find: db [ft] = 0.01747 +0.47 * 0.05455 =0.01747 d2 d2=15.109 [ft] Lo Ho’ = 10 [ft] L2= 281.359 [ft] Lo = 865.013[ft] tanh2(k*d)= ? d2/L = 0.53 * 0.05296 HA,2/Ho’= ? +0.47 * 0.05455 d2/L2 = 0.05370 the shoaling coefficient, H A or H knot prime, by using --- d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] +0.47 * 1.255 +0.47* 0.3298 =0.01747 d2=15.109 [ft] HA,2/Ho’= 0.53 * 1.271 +0.47 * 1.255 Ho’ = 10 [ft] L2= 281.359 [ft] tanh2(k*d)= 0.53 * 0.3209 +0.47* 0.3298 interpolation again. [pause] And tanh 2 k d equals, --- d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] +0.47 * 1.255 +0.47* 0.3298 =0.01747 d2=15.109 [ft] HA,2/Ho’= 0.53 * 1.271 +0.47 * 1.255 Ho’ = 10 [ft] L2= 281.359 [ft] tanh2(k*d)= 0.53 * 0.3209 +0.47* 0.3298 tanh2(k*d)= 0.3251 0.3251, and the soaling coefficient for this second iteration, equals, --- d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] +0.47 * 1.255 +0.47* 0.3298 =0.01747 d2=15.109 [ft] HA,2/Ho’= 0.53 * 1.271 +0.47 * 1.255 Ho’ = 10 [ft] L2= 281.359 [ft] HA,2/Ho’ = 1.2635 tanh2(k*d)= 0.53 * 0.3209 +0.47* 0.3298 tanh2(k*d)= 0.3251 1.2635. [pause] Next, we’ll compute H A 2, over L 2, --- d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] = =0.01747 HA,2 HA,2 Ho’ d2=15.109 [ft] * L2 Ho’ L2 Ho’ = 10 [ft] L2= 281.359 [ft] tanh2(k*d)= 0.3251 HA,2/Ho’= 1.2635 and after plugging in the known variables, we get, --- d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] = = 0.04491 =0.01747 HA,2 HA,2 Ho’ d2=15.109 [ft] * L2 Ho’ = 10 [ft] L2= 281.359 [ft] HA,2 tanh2(k*d)= 0.3251 = 0.04491 L2 HA,2/Ho’= 1.2635 0.04491. [pause] And to solve for H b 2, over L 2, --- d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] = 0.142 * tanh2 (k*d) = 0.04491 =0.01747 Hb,2 d2=15.109 [ft] = 0.142 * tanh2 (k*d) L2 Ho’ = 10 [ft] L2= 281.359 [ft] tanh2(k*d)= 0.3251 HA,2/Ho’= 1.2635 HA,2 we’ll plug in the hyperbolic tangent of k d, and compute, --- = 0.04491 L2 d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] = 0.142 * tanh2 (k*d) = 0.04616 = 0.04491 =0.01747 Hb,2 d2=15.109 [ft] = 0.142 * tanh2 (k*d) L2 Ho’ = 10 [ft] L2= 281.359 [ft] Hb,2 = 0.04616 tanh2(k*d)= 0.3251 L2 HA,2/Ho’= 1.2635 HA,2 0.04616. [pause] As before, we’ll compare --- = 0.04491 L2 d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

Find: db [ft] = 0.142 * tanh2 (k*d) = 0.04616 = 0.04491 =0.01747 Hb,2 d2=15.109 [ft] = 0.142 * tanh2 (k*d) L2 Ho’ = 10 [ft] L2= 281.359 [ft] Hb,2 = 0.04616 tanh2(k*d)= 0.3251 L2 HA,2/Ho’= 1.2635 HA,2 the computed height of the wave and the breaking height of the wave, --- = 0.04491 L2 d/Lo tanh(k*d) HA/Ho’ d2 0.017 0.3209 1.271 =0.01747 Lo 0.018 0.3298 1.255

< > Find: db [ft] = 0.04491 = 0.04616 HA Hb d2=15.109 [ft] if L Ho’ = 10 [ft] then d > db L2= 281.359 [ft] use smaller d tanh2(k*d)= 0.3251 HA Hb > HA,2/Ho’= 1.2635 if L L HA,2 then d < db and this time, we find out that the wave breaks at a shallow depth than d 2, --- = 0.04491 L2 use larger d Hb,2 = 0.04616 L2

< > Find: db [ft] = 0.04491 = 0.04616 HA Hb d2=15.109 [ft] if L Ho’ = 10 [ft] then d > db L2= 281.359 [ft] use smaller d tanh2(k*d)= 0.3251 HA Hb > HA,2/Ho’= 1.2635 if L L HA,2 then d < db and we should test a smaller depth d. For the next iteration, --- = 0.04491 L2 use larger d Hb,2 = 0.04616 L2

< Find: db [ft] = 0.04491 = 0.04616 HA Hb d2=15.109 [ft] if L L Ho’ = 10 [ft] then d > db L2= 281.359 [ft] use smaller d tanh2(k*d)= 0.3251 HA,2/Ho’= 1.2635 ( HA,i / Li ) di+1= di * ( Hb,i / Li ) HA,2 we’ll compute the next depth to evaluate, d 3, which equals, --- = 0.04491 L2 Hb,2 = 0.04616 L2

< Find: db [ft] = 0.04491 = 0.04616 HA Hb d2=15.109 [ft] if L L Ho’ = 10 [ft] then d > db L2= 281.359 [ft] use smaller d tanh2(k*d)= 0.3251 HA,2/Ho’= 1.2635 ( HA,i / Li ) di+1= di * ( Hb,i / Li ) HA,2 14.700 feet. [pause] If we went through another entire iteration, our fourth depth, d 4, --- = 0.04491 L2 d3= 14.700 [ft] Hb,2 = 0.04616 L2

> Find: db [ft] = 0.04578 = 0.04555 HA Hb d3=14.700 [ft] if L L Ho’ = 10 [ft] then d < db L3= 277.673 [ft] use larger d tanh3(k*d)= 0.3208 HA,3/Ho’= 1.2712 ( HA,i / Li ) di+1= di * ( Hb,i / Li ) HA,3 would equal 14.774 feet. [pause] Next, if we look at our successive approximations --- = 0.04578 L3 d4= 14.774 [ft] Hb,3 = 0.04555 L3

> Find: db [ft] HA Hb if L L then d < db d1=13.000 [ft] use larger d d2= 15.100 [ft] d3=14.700 [ft] ( HA,i / Li ) di+1= di * d4= 14.774 [ft] ( Hb,i / Li ) for the breaking depth, d b, we notice the depth is converging on a value close to ---

> Find: db [ft] HA Hb if L L then d < db d1=13.000 [ft] use larger d d2= 15.100 [ft] d3=14.700 [ft] ( HA,i / Li ) di+1= di * d4= 14.774 [ft] ( Hb,i / Li ) 14.7 something feet. [pause] 14.7 [ft] < db < 14.8 [ft]

> Find: db [ft] HA Hb if L L then d < db d1=13.000 [ft] use larger d d2= 15.100 [ft] d3=14.700 [ft] A) 7.75 B) 11.25 C) 14.75 D) 18.25 d4= 14.774 [ft] When reviewing the possible solutions, --- 14.7 [ft] < db < 14.8 [ft]

> Find: db [ft] HA Hb if L L then d < db d1=13.000 [ft] use larger d d2= 15.100 [ft] d3=14.700 [ft] A) 7.75 B) 11.25 C) 14.75 D) 18.25 d4= 14.774 [ft] the answer is C. [fin] 14.7 [ft] < db < 14.8 [ft] answerC