Find: αb wave direction breaking αo wave contours αb beach A) 8.9

Slides:



Advertisements
Similar presentations
Transformation of Shallow-Water Waves The Certificate Program in Tsunami Science and Preparedness. Held at the University of Washington in Seattle, Washington.
Advertisements

A conical tank (with vertex down) is 10 feet across the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute,
Solving Equations Containing To solve an equation with a radical expression, you need to isolate the variable on one side of the equation. Factored out.
Chapter 7 continued Open Channel Flow
Rational and Irrational Numbers 9 2. Recall that a rational number is a number that can be written as a quotient, where a and b are integers and b ≠ 0.
How do we solve linear inequalities? Do Now: What do you remember about solving quadratic inequalities?
Step 1: Graph the points. You can extend the graph if needed.
GG450 April 1, 2008 Huygen’s Principle and Snell’s Law.
By: Clay Pennington Wade Davis Perri Lyles Cara Sbrissa.
By: Adam Linnabery. The quadratic formula is –b+or-√b 2 -4ac 2a an example of how it is used: X 2 -4x-12=0 the coefficient of x 2 is 1 therefore the value.
A cylindrical tank is initially filled with water to a depth of 16 feet. A valve in the bottom is opened and the water runs out. The depth, h, of the.
One Answer, No Answers, or an Infinite Number of Answers.
Solving Equations. What are we going to do if we have non-zero values for a, b and c but can't factor the left hand side? This will not factor so we will.
EXAMPLE 3 Using an Irrational Number Waves For large ocean waves, the wind speed s in knots and the height of the waves h in feet are related by the equation.
In this chapter, we explore some of the applications of the definite integral by using it to compute areas between curves, volumes of solids, and the work.
1A B C1A B C 2A B C2A B C 3A B C3A B C 4A B C4A B C 5A B C5A B C 6A B C6A B C 7A B C7A B C 8A B C8A B C 9A B C9A B C 10 AA B CBC 11 AA B CBC 12 AA B CBC.
10 Quadratic Equations.
Theorem 12.9 Volume of a Pyramid
Introduction The Pythagorean Theorem is often used to express the relationship between known sides of a right triangle and the triangle’s hypotenuse.
Matrix Equations Step 1: Write the system as a matrix equation. A three-equation system is shown below. First matrix are the coefficients of all the.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Solving Equations Containing
Find: FR [N] R water d FR R = 20 [m] circular 1.62*107 gate 1.72*107
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Solution of Equations by Iteration
Find: The Lightest I Beam
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Solving Equations Containing
Find: Wsphere,A [lbf] in air wsphere,w = 85 [lbf] in water Tw = 60 F
Find: Wcone [lbf] D D = 3 [ft] air SGo = 0.89 d3 SGw= 1.00 oil d2
Splash Screen.
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: KR,b wave direction αo plan contours view beach db = 15 [ft]
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: Fcr [lb/in2] Fcr E = 2.9 * 107 [lb/in2] fy = 36,000 [lb/in2]
Find: minimum # of stages
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Solving Equations Containing
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
Find: λc P P 1[in] fixed y 8 [in] A A’ 14[in] x 1[in] L z z fixed L/2
Polynomials: Application
Find: φcPn [lb] column in compression E = 2.9 * 107 [lb/in2]
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: To [s] ua = 40 [mi/hr] ua F = 30 [mi] d = 15 [hr] F nomogram
Find: F [lbf] in order to keep the gate vertical air F 267 water 293
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Bearing Capacity, qult [lb/ft2]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: SG air Wcyl,A=350 [N] fluid Wcyl,S=200 [N] r h
Find: db [ft] Ho’ db Ho’ = 10 [ft] A) 7.75 B) C) 14.75
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: co [ft/s] ua = 20 [mi/hr] d = 2 [hr] duration F = 15 [mi]
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: hL [m] rectangular d channel b b=3 [m]
Trig Equations w/ Multiple Angles.
Find: hT Section Section
Find: AreaABCD [acres]
Find: AreaABCD [ft2] C 27,800 30,500 B 33,200 36,000 N A D set up
Geometry Section 7.7.
Solving Equations Containing
Mazen Abualtayef Associate Prof., IUG, Palestine
Presentation transcript:

Find: αb wave direction breaking αo wave contours αb beach A) 8.9 Ho = 20 [ft] Find alpha b, the apporach angle of the wave when the wave breaks. [pause] In this problem we are provided, --- o T = 15 [s] o αo = 30 o o

Find: αb wave direction breaking αo wave contours αb beach A) 8.9 Ho = 20 [ft] the deepwater waveheight, H knot, the period of the wave, --- o T = 15 [s] o αo = 30 o o

Find: αb wave direction breaking αo wave contours αb beach A) 8.9 Ho = 20 [ft] T, and alpha knot, which is, --- o T = 15 [s] o αo = 30 o o

Find: αb wave direction breaking αo wave contours αb beach A) 8.9 Ho = 20 [ft] the deepwater approach angle. [pause] The problem asks to find alpha b, --- o T = 15 [s] o αo = 30 o o

Find: αb wave direction breaking αo wave contours αb beach A) 8.9 Ho = 20 [ft] which is the angle between the crestline of the wave and the ocean bottom contours, when the wave breaks. To find alpha b, --- o T = 15 [s] o αo = 30 o o

Find: αb = wave direction breaking αo wave contours αb beach sin (αb) sin (αo) = we’ll use the relationship which relates alpha b to alpha knot, L b and L knot. Where L b and L knot --- Lb Lo

Find: αb = wave direction breaking αo wave contours αb beach sin (αb) sin (αo) deep water = correspond to the wavelength for the breaking condition and deepwater condition, respectively. [pause] After solving for alpha b, --- wavelength Lb Lo wavelength at the breaking depth

Find: αb = wave direction breaking αo wave contours αb beach sin (αb) sin (αo) deep water = we can plug in the value of alpha knot, which is 30 degrees, --- wavelength Lb Lo Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb = wave direction breaking αo wave contours αb beach sin (αb) sin (αo) deep water = and was provided in the problem statement. [pause] But we still have to find --- wavelength Lb Lo o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb = wave direction breaking αo wave contours αb beach sin (αb) sin (αo) deep water = L b, and, L knot. [pause] L knot, equals, --- wavelength Lb Lo o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb = wave direction breaking αo wave contours αb beach sin (αb) sin (αo) g * T2 = g times T squared, divided by 2 PI. [pause] Variable g represents the --- Lo = Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb = wave direction breaking αo wave contours αb beach 32.16 [ft/s2] sin (αb) sin (αo) g * T2 = gravitational acceleration constant, and variable T is the wave period, --- Lo = Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb = wave direction breaking αo wave contours αb beach 32.16 [ft/s2] T = 15 [s] sin (αb) sin (αo) g * T2 = which was provided as 15 seconds. [pause] This makes L knot, equal to, --- Lo = Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb = =1,151.645 [ft] wave direction breaking αo wave contours αb beach 32.16 [ft/s2] T = 15 [s] sin (αb) sin (αo) g * T2 = 1,151.645 feet. [pause] Lastly, we need to determine, L b, --- Lo = =1,151.645 [ft] Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb ? = =1,151.645 [ft] wave direction breaking αo wave contours beach 32.16 [ft/s2] T = 15 [s] sin (αb) sin (αo) g * T2 = the wavelength of the wave, when the wave breaks. [pause] We know we have found L b, when we select a wave depth, d, --- Lo = =1,151.645 [ft] Lb Lo 2 * π o 30 ? Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

Find: αb ? =1,151.645 [ft] wave direction breaking αo wave contours αb beach 32.16 [ft/s2] T = 15 [s] d=? g * T2 which results in a wave condition, where the actual height of the wave, H A, --- Lo = =1,151.645 [ft] 2 * π wave o 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = Lo=1,151.645 [ft] wave direction breaking αo wave contours actual wave wave height at height breaking depth Ha = Hb d=? equals the breaking height of the wave, H b. [pause] This is the same comparison, as if we happen to divide --- Lo=1,151.645 [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = Lo=1,151.645 [ft] wave direction breaking αo wave contours actual wave wave height at height breaking depth Ha Hb d=? = both sides of the equation by the wavelength, L. [pause] To begin, we’ll arbitrarily choose a wave depth of --- Lo=1,151.645 [ft] L L o wave 30 ? wavelength depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = Lo=1,151.645 [ft] wave direction breaking αo wave contours actual wave wave height at height breaking depth Ha Hb d=20 [ft] = 20 feet for our first iteration. [pause] Next, we’ll compute d over L knot, --- Lo=1,151.645 [ft] L L o wave 30 ? wavelength depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = Lo=1,151.645 [ft] wave direction αo αb beach d Lo d=20 [ft] and after plugging the appropriate variables, d over L knot, --- Lo=1,151.645 [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? =0.01736 Lo=1,151.645 [ft] wave direction αo αb beach d Lo d=20 [ft] equals, 0.01736. [pause] This value of d over L knot corresponds to a d over L value of, --- Lo=1,151.645 [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? =0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L beach d =0.01736 Lo d=20 [ft] 0.05353. Therefore, the wavelength for this wave, --- Lo=1,151.645 [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L beach d =0.01736 Lo d=20 [ft] at a depth of 20 feet, equals, -- Lo=1,151.645 [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 = 373.622 [ft] =0.01736 Lo=1,151.645 [ft] wave direction αo d = 0.05353 L αb d L= = 373.622 [ft] d/L beach d =0.01736 Lo d=20 [ft] 373.622 feet. [pause] Also, by knowing the value of d over L knot, --- Lo=1,151.645 [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L L= 373.622 [ft] beach d=20 [ft] d =0.01736 Lo we can interpolate to find the hyperbolic tangent of k d, and, --- Lo=1,151.645 [ft] o 30 ? Lb αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L L= 373.622 [ft] beach d=20 [ft] d =0.01736 Lo the shoaling coeffcient, H over H knot prime, where the variable H, --- Lo=1,151.645 [ft] o tanh (k*d) = 0.3241 30 ? Lb H/Ho = 1.2652 ‘ αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L L= 373.622 [ft] beach d=20 [ft] d =0.01736 Lo represents the actual height of the wave, H A, at the tested depth of, --- Lo=1,151.645 [ft] o tanh (k*d) = 0.3241 30 ? Lb H/Ho = 1.2652 ‘ αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L L= 373.622 [ft] beach d=20 [ft] d =0.01736 Lo 20 feet, and that variable H, is what we’ll use to compare the actual wave, H a, --- Lo=1,151.645 [ft] o tanh (k*d) = 0.3241 30 ? Lb H/Ho = 1.2652 ‘ αb = sin-1 sin(αo) * Lo

Find: αb ? = 0.05353 = =0.01736 Lo=1,151.645 [ft] actual wave d height Ha Hb L= 373.622 [ft] = L L d=20 [ft] d =0.01736 Lo with the wave at its breaking condition, H b. [pause] The right hand side of this equation, H b over L, --- Lo=1,151.645 [ft] o tanh (k*d) = 0.3241 30 ? Lb H/Ho = 1.2652 ‘ αb = sin-1 sin(αo) * Lo

Find: αb = 0.05353 = =0.01736 = 0.142 * tanh (k*d) actual wave d height L Ha Hb L= 373.622 [ft] = L L d=20 [ft] d =0.01736 Hb Lo equals, 0.142 times the hyperbolic tangent of k d, --- = 0.142 * tanh (k*d) L tanh (k*d) = 0.3241 H/Ho = 1.2652 ‘

Find: αb = 0.05353 = = 0.0460 =0.01736 = 0.142 * tanh (k*d) actual wave d = 0.05353 height L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Hb = 0.0460 d L =0.01736 Hb Lo which equals, 0.0460. [pause] Solving for the actual wave height, H a, --- = 0.142 * tanh (k*d) L tanh (k*d) = 0.3241 H/Ho = 1.2652 ‘

Find: αb = 0.05353 = = 0.0460 =0.01736 = 0.142 * tanh (k*d) actual wave d = 0.05353 height L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Hb = 0.0460 d L =0.01736 Hb Lo we must first compute the approach angle the wave would make, --- = 0.142 * tanh (k*d) L tanh (k*d) = 0.3241 H/Ho = 1.2652 ‘

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] L Lo=1,151.645 [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = 0.3241 at a depth of 20 feet. And after plugging in the known variables of, --- H/Ho = 1.2652 ‘

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L o 30 d=20 [ft] L Lo=1,151.645 [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = 0.3241 L, L knot, and alpha knot, the crestline of the wave would be ---- H/Ho = 1.2652 ‘

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L o 30 d=20 [ft] L Lo=1,151.645 [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = 0.3241 9.319 degrees offset from the ocean bottom contours. With the value of alpha, we can compute --- α = 9.319 o H/Ho = 1.2652 ‘

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L o 30 d=20 [ft] L Lo=1,151.645 [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = 0.3241 the wave refraction index, K r, which equals, --- α = 9.319 o H/Ho = 1.2652 ‘ cos (αo) KR = cos (α)

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L o 30 d=20 [ft] L Lo=1,151.645 [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = 0.3241 0.9368. [pause] After that, we’ll compute the unrefracted deepwater wave height, --- α = 9.319 o H/Ho = 1.2652 ‘ o cos (αo) 30 KR = cos (α) KR =0.9368

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Lo=1,151.645 [ft] Ho = KR * Ho ‘ tanh (k*d) = 0.3241 H knot prime, by multipliying the refraction coefficient by the deepwater wave height. We just computed --- unrefracted H/Ho = 1.2652 ‘ deepwater α = 9.319 o wave height KR =0.9368

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Lo=1,151.645 [ft] Ho = KR * Ho ‘ tanh (k*d) = 0.3241 the refraction coefficient, K r, and the problem statement provided the deepwater --- unrefracted H/Ho = 1.2652 ‘ deepwater α = 9.319 o wave height KR =0.9368

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1,151.645 [ft] Ho = KR * Ho ‘ tanh (k*d) = 0.3241 wave height as 20 feet. This makes the unrefracted deepwater wave height, equal to, --- unrefracted H/Ho = 1.2652 ‘ deepwater α = 9.319 o wave height KR =0.9368

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1,151.645 [ft] Ho = KR * Ho ‘ tanh (k*d) = 0.3241 18.736 feet. [pause] Now, to find the actual height of the wave at this depth, --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o KR =0.9368

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1,151.645 [ft] Ho = KR * Ho ‘ tanh (k*d) = 0.3241 we’ll multiply H knot prime by the shoaling coefficient, and the actual height, equals, --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1,151.645 [ft] Ho = KR * Ho ‘ tanh (k*d) = 0.3241 23.705 feet. [pause] When divided by the wavelength, L, --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Ha Lo=1,151.645 [ft] L tanh (k*d) = 0.3241 the quotient, H a over L, equals, -- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb ? = 0.05353 = Lo=1,151.645 [ft] = 0.0634 actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] = L L d=20 [ft] Ha Lo=1,151.645 [ft] = 0.0634 L tanh (k*d) = 0.3241 0.0634. [pause] Since the actual height of the wave H a, --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb = 0.05353 > Lo=1,151.645 [ft] = 0.0634 actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] > L L d=20 [ft] Ha Lo=1,151.645 [ft] = 0.0634 L tanh (k*d) = 0.3241 is greater than the breaking height of the wave, then, this wave does not exist, because, it broke, at a depth, --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb = 0.05353 > Lo=1,151.645 [ft] = 0.0634 actual wave d height 0.0460 L Ha Hb L= 373.622 [ft] > L L d=20 [ft] d < db Ha Lo=1,151.645 [ft] = 0.0634 L tanh (k*d) = 0.3241 deeper than 20 feet. [pause] For our second iteration, we’ll use a depth based on --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb = 0.05353 > Lo=1,151.645 [ft] d 0.0634 0.0460 L Ha Hb L= 373.622 [ft] > L L d=20 [ft] d < db ( HA,i / Li ) di+1= di Lo=1,151.645 [ft] * ( Hb,i / Li ) tanh (k*d) = 0.3241 our previous depth, and variables H a, and, H b. [pause] After plugging in --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb = 0.05353 > Lo=1,151.645 [ft] d 0.0634 0.0460 L Ha Hb L= 373.622 [ft] > L L d=20 [ft] ( HA,i / Li ) di+1= di Lo=1,151.645 [ft] * ( Hb,i / Li ) tanh (k*d) = 0.3241 the appropriate variables, our next depth to test will be, --- Ho = 18.736 [ft] ‘ H/Ho = 1.2652 ‘ α = 9.319 o H = Ho * (H/Ho ) ‘ ‘ KR =0.9368 H = 23.705 [ft]

Find: αb = 0.05353 > Lo=1,151.645 [ft] d 0.0634 0.0460 L Ha Hb L= 373.622 [ft] > L L d=20 [ft] ( HA,i / Li ) d2= d1 Lo=1,151.645 [ft] * ( Hb,i / Li ) tanh (k*d) = 0.3241 27.58 feet. [pause] When using the depth of 27.58 feet, --- d2= 27.58 [ft] H/Ho = 1.2652 ‘ α = 9.319 o KR =0.9368

Find: αb ? = ? = Lo=1,151.645 [ft] d ? ? L Ha Hb L= ? [ft] L L d=27.58 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = ? and performing the same calculations as the first iteration, --- H/Ho = ? ‘ α = ? o KR =?

Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb L= 435.497 [ft] < L L d=27.58 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 0.3782 we compute the values shown here. At this depth, we notice the actual height of the wave, --- H/Ho = 1.1786 ‘ α = 10.899 o KR =0.9391

Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb L= 435.497 [ft] < L L d=27.58 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 0.3782 H a, is less than the breaking height of the wave, H b. Therefore, our subsequent depth, --- H/Ho = 1.1786 ‘ α = 10.899 o KR =0.9391

Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb L= 435.497 [ft] < L L d=27.58 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] d3= d2 * ( Hb,i / Li ) tanh (k*d) = 0.3782 d 3, will be shallower than 27.58 feet. For our next depth value we’ll try --- H/Ho = 1.1786 ‘ α = 10.899 o KR =0.9391

Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb L= 435.497 [ft] < L L d=27.58 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] d3= d2 * ( Hb,i / Li ) tanh (k*d) = 0.3782 26.09 feet. [pause] After running through a third iteration, --- d3= 26.09 [ft] H/Ho = 1.1786 ‘ α = 10.899 o KR =0.9391

Find: αb ? = ? = Lo=1,151.645 [ft] d ? ? L Ha Hb L= ? [ft] L L d=26.09 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = ? for this new depth value, we again calculate out all the values, ---- H/Ho = ? ‘ α = ? o KR =?

Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb L= 424.288 [ft] < L L d=26.09 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 0.3759 as shown. [pause] As the actual wave height approaches the breaking wave height, --- H/Ho = 1.1932 ‘ α = 10.613 o KR =0.9387

Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb L= 424.288 [ft] < L L d=26.09 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 0.3759 the actual approach angle converges on the approach angle for the breaking wave, alpha b. [pause] The approach angle for the first 3 iterations are, --- H/Ho = 1.1932 ‘ α = 10.613 o KR =0.9387

Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb L= 424.288 [ft] < L L d=26.09 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 0.3759 9.319 degrees, 10.899 degrees, and 10.613 degrees. Where 10.613 degrees --- α1 = 9.319 o H/Ho = 1.1932 ‘ α2 = 10.899 o α = 10.613 o α3 = 10.613 o KR =0.9387

Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb L= 424.288 [ft] < L L d=26.09 [ft] ( HA,i / Li ) Lo=1,151.645 [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 0.3759 is the most accurate approximation for alpha b, because this value in our algorithm converges to alpha b. [pause] α1 = 9.319 o H/Ho = 1.1932 ‘ α2 = 10.899 o α = 10.613 o α3 = 10.613 o KR =0.9387

Find: αb = 0.06150 Lo=1,151.645 [ft] d A) 8.9 B) 10.5 L C) 12.1 L= 424.288 [ft] o d=26.09 [ft] Lo=1,151.645 [ft] tanh (k*d) = 0.3759 When reviewing the possible solutions, --- α1 = 9.319 o H/Ho = 1.1932 ‘ α2 = 10.899 o α = 10.613 o α3 = 10.613 o KR =0.9387

Find: αb = 0.06150 Lo=1,151.645 [ft] d A) 8.9 B) 10.5 L C) 12.1 L= 424.288 [ft] o d=26.09 [ft] Lo=1,151.645 [ft] answerB tanh (k*d) = 0.3759 the answer is B. [fin] α1 = 9.319 o H/Ho = 1.1932 ‘ α2 = 10.899 o α = 10.613 o α3 = 10.613 o KR =0.9387