Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.

Slides:



Advertisements
Similar presentations
Neurology Resident and Fellow Section
Advertisements

MRI and possible differentiating features with nonconventional MRI
Figure 2. A patient with multifocal nodular lesions diagnosed with CNS tuberculosis A patient with multifocal nodular lesions diagnosed with CNS tuberculosis.
Figure 2. MRI features of patients with MS who had antibodies to myelin oligodendrocyte glycoprotein MRI features of patients with MS who had antibodies.
Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Evolution of MRI abnormalities in faciobrachial dystonic seizures Axial fluid- attenuated inversion recovery (FLAIR)-weighted images from patient.
Figure 2 Association of serum IgG reactivity with MRI measures of disease severity Association of serum IgG reactivity with MRI measures of disease severity.
Figure 2 Spinal cord lesions
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure 3 Example of venous narrowing
Fluid-attenuated inversion recovery magnetic resonance imaging at the onset of the clinical investigation (A, B) and 2 months later (C, D). Fluid-attenuated.
Figure Patient 1's ictal EEG and brain MRI and patient 2's ictal EEG and polygraphic recording(A) Patient 1's EEG showing an ictal discharge over right.
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure 1. Prebiopsy and postbiopsy MRI
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure Nuclear Nrf2 expression after fumarate therapy A new left occipital fluid-attenuated inversion recovery hyperintense (A), T1 hypointense (B), and.
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure MRIs and histopathology of the biopsy specimens
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 3 EEG demonstrating ictal seizure discharges in a patient with faciobrachial dystonic seizures The EEG of a 56-year-old woman with faciobrachial.
Figure MRI and immunologic findings
Figure MRI and neuropathologic characteristics of the tumefactive demyelinating lesion in our patient MRI and neuropathologic characteristics of the tumefactive.
Figure Radiologic and pathologic findings Fluid-attenuated inversion recovery (FLAIR) sequence with a single large T2-hyperintense signal involving the.
Figure 2 Example of venous narrowing
Figure 3. Brain imaging and neuropathologic studies in patient PT-5 diagnosed with progressive multifocal leukoencephalopathy Brain imaging and neuropathologic.
Figure 1 Schematic overview of flow cytometry Schematic overview on the analysis of peripheral immune cells by flow cytometry. Schematic overview of flow.
Figure 1 Evolution of blood cell counts during 18-month treatment and follow-up (A) Mean white blood cell count, (B) mean lymphocyte count, (C) mean eosinophil.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure Genetic deletion and MRI changes with EHMT1 deletion
Figure 1 Patients with acute anti–NMDA receptor encephalitis have marked hypometabolism of the visual cortical brain region correlating with the medial.
Figure 1 Reibergram (CSF/serum quotient diagram) of all included patients Increasing albumin quotients reflect increasing blood-brain barrier dysfunction.
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1. Radiologic and pathologic findings
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 3 Clinical and MRI outcomes by quartiles of increasing CD56bright natural killer (NK) cell countsAll data are mean and upper 95% confidence interval.
Figure 1 Radiologic features of patients with white matter syndromes in association with NMDA receptor antibodies Radiologic features of patients with.
Figure 4 Unspecific MRI findings and facial dysmorphy in patients with germline variants Unspecific MRI findings and facial dysmorphy in patients with.
Figure 1 MRI findings over time
Figure Imaging, histology/immunohistochemistry, and schematic course of treatment with corresponding clinical and radiologic disease activity Imaging,
Figure 2 Brain MRI at 1 year of age
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 2 Assessment of systemic disease activityTc99 scintigraphy (A) and fluorodeoxyglucose PET imaging (B, C) at disease onset 2 years before acute deterioration.
Figure Brain MRI findings before and during appearance of lymphoproliferative disorder and pathology findings of cerebellar lesion Brain MRI findings before.
Figure MRI brain comparison prior and after treatment and brain biopsy findings MRI brain comparison prior and after treatment and brain biopsy findings.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 2 MRIs (cases 2 and 3)‏
Involvement of the frontal and parietal lobes in patients with isolated cortical hyperintensities. Involvement of the frontal and parietal lobes in patients.
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure MRI demonstrating cerebellar encephalitis, longitudinally extensive transverse myelitis, and pathology of seminoma(A) Parasagittal T1 postcontrast.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 2 Patient 1 MRI evolution over time
Figure 1 MRI at presentation The axial diffusion-weighted image (A) showed restricted diffusion throughout the cortical ribbon of the right hemisphere.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
MR scans of brain and spine: (A) sagittal T2 image showing signal change in the posterior spinal cord between C3 and T6. MR scans of brain and spine: (A)
Figure 1 MRIs MRIs (A and B) Axial FLAIR images of the brain demonstrate multifocal parenchymal lesions including the right hippocampus, right midbrain,
Presentation transcript:

Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal cortical-subcortical hyperintensities at onset. MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal cortical-subcortical hyperintensities at onset. (B) Axial FLAIR sequences 1 year later after therapy showing regression of the lesions. (C) Axial FLAIR sequences at the time of seizure recurrence after steroid withdrawal showing no new lesions. (D) Biopsy of the right parietal lesion with immunohistochemistry for CD8 showing a cortical cluster of inflammatory cells consisting primarily of cytotoxic T cells. (E) EEG showing right hemispheric ictal episode. Zuzana Liba et al. Neurol Neuroimmunol Neuroinflamm 2015;2:e69 © 2015 American Academy of Neurology