Volume 10, Issue 5, Pages (March 2000)

Slides:



Advertisements
Similar presentations
Volume 88, Issue 5, Pages (March 1997)
Advertisements

Volume 24, Issue 15, Pages (August 2014)
Mark M Metzstein, H.Robert Horvitz  Molecular Cell 
Janice M Dobrowolski, L.David Sibley  Cell 
Spatially Restricted Expression of pipe in the Drosophila Egg Chamber Defines Embryonic Dorsal–Ventral Polarity  Jonaki Sen, Jason S Goltz, Leslie Stevens,
The DHHC Palmitoyltransferase Approximated Regulates Fat Signaling and Dachs Localization and Activity  Hitoshi Matakatsu, Seth S. Blair  Current Biology 
Volume 14, Issue 5, Pages (March 2004)
Marc Furriols, Sarah Bray  Current Biology 
Tensin Stabilizes Integrin Adhesive Contacts in Drosophila
Volume 12, Issue 7, Pages (April 2002)
Sp1 Is Required for Glucose-Induced Transcriptional Regulation of Mouse Vesicular Glutamate Transporter 2 Gene  Tao Li, Liqun Bai, Jing Li, Suzu Igarashi,
Volume 11, Issue 4, Pages (April 2003)
Volume 7, Issue 3, Pages (March 2001)
Volume 10, Issue 18, Pages (September 2000)
Xiaofeng Cao, Steven E. Jacobsen  Current Biology 
Volume 16, Issue 12, Pages (June 2006)
Volume 93, Issue 7, Pages (June 1998)
The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans  Jennifer A Zallen, B.Alexander Yi,
Act up Controls Actin Polymerization to Alter Cell Shape and Restrict Hedgehog Signaling in the Drosophila Eye Disc  Aude Benlali, Irena Draskovic, Dennis.
Volume 88, Issue 5, Pages (March 1997)
Douglas J Guarnieri, G.Steven Dodson, Michael A Simon  Molecular Cell 
Volume 9, Issue 3, Pages (February 1999)
High Frequency Retrotransposition in Cultured Mammalian Cells
Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein  Jeffrey D. Lee, Jessica E. Treisman  Current.
Proteolysis of the Hedgehog Signaling Effector Cubitus interruptus Requires Phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1  Mary Ann.
Helen Strutt, Mary Ann Price, David Strutt  Current Biology 
Muscles in the Drosophila second thoracic segment are patterned independently of autonomous homeotic gene function  Sudipto Roy, L.S. Shashidhara, K VijayRaghavan 
Volume 24, Issue 15, Pages (August 2014)
Nicholas S. Sokol, Lynn Cooley  Current Biology 
lin-35 and lin-53, Two Genes that Antagonize a C
Volume 12, Issue 5, Pages (November 2003)
DNA methylation in hematopoietic development and disease
Chromatin Remodeling In Vivo
Volume 5, Issue 3, Pages (March 2000)
Both E12 and E47 Allow Commitment to the B Cell Lineage
Qiong A. Liu, Michael O. Hengartner  Current Biology 
Alternative Mechanisms for Talin to Mediate Integrin Function
Volume 86, Issue 1, Pages (July 1996)
ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform  Sandhya P. Koushika, Michael J.
Drosophila CRYPTOCHROME Is a Circadian Transcriptional Repressor
insomniac and Cullin-3 Regulate Sleep and Wakefulness in Drosophila
Yoshinori Tomoyasu, Yasuyuki Arakane, Karl J. Kramer, Robin E. Denell 
Volume 12, Issue 11, Pages (June 2002)
The Role of Oocyte Transcription, the 5′UTR, and Translation Repression and Derepression in Drosophila gurken mRNA and Protein Localization  Carol Saunders,
Hitoshi Sawa, Hiroko Kouike, Hideyuki Okano  Molecular Cell 
Maya Capelson, Victor G. Corces  Molecular Cell 
Odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl  Piali Sengupta, Joseph H Chou, Cornelia.
Drosophila atonal Fully Rescues the Phenotype of Math1 Null Mice
Volume 99, Issue 2, Pages (October 1999)
Magalie Lecourtois, François Schweisguth  Current Biology 
Ezequiel Alvarez-Saavedra, H. Robert Horvitz  Current Biology 
Characterization and Mutation Analysis of Human LEFTY A and LEFTY B, Homologues of Murine Genes Implicated in Left-Right Axis Development  K. Kosaki,
Volume 85, Issue 6, Pages (June 1996)
Volume 14, Issue 17, Pages (September 2004)
Volume 22, Issue 4, Pages (April 2014)
Volume 2, Issue 4, Pages (April 2002)
Volume 26, Issue 6, Pages (June 2018)
Sugar Receptors in Drosophila
Peter Swoboda, Haskell T. Adler, James H. Thomas  Molecular Cell 
The Drosophila dCREB2 Gene Affects the Circadian Clock
Volume 15, Issue 23, Pages (December 2005)
Volume 26, Issue 1, Pages (April 2000)
Bih-Hwa Shieh, Mei-Ying Zhu  Neuron 
Transcriptional and Developmental Functions of the H3
Marelle Acts Downstream of the Drosophila HOP/JAK Kinase and Encodes a Protein Similar to the Mammalian STATs  Xianyu Steven Hou, Michael B Melnick, Norbert.
Predicted Amino Acid Sequence of the Tomato Cf-4 Protein (Thomas et al
Exon Skipping in IVD RNA Processing in Isovaleric Acidemia Caused by Point Mutations in the Coding Region of the IVD Gene  Jerry Vockley, Peter K. Rogan,
Volume 13, Issue 21, Pages (October 2003)
The Transmembrane Semaphorin Sema I Is Required in Drosophila for Embryonic Motor and CNS Axon Guidance  Hung-Hsiang Yu, Houmam H Araj, Sherry A Ralls,
Volume 18, Issue 6, Pages (June 2010)
Presentation transcript:

Volume 10, Issue 5, Pages 269-272 (March 2000) Protein phosphatase 1β is required for the maintenance of muscle attachments  S. Raghavan, I. Williams, H. Aslam, D. Thomas, B. Szöőr, G. Morgan, S. Gross, J. Turner, J. Fernandes, K. VijayRaghavan, L. Alphey  Current Biology  Volume 10, Issue 5, Pages 269-272 (March 2000) DOI: 10.1016/S0960-9822(00)00364-X

Figure 1 Molecular characterisation of PP1β9C. (a) Gene structure of PP1β9C. Sites for the restriction enzymes BglII (B), EcoRI (E) and XhoI (X) are marked. DS03519 and DS06782 are P1 clones from the Berkeley Drosophila genome project, 121A3 is a cosmid from the European Drosophila Genome Project. (b) Comparison of the intron/exon structure of human and fly PP1β within the 981 nt coding region. The nucleotide positions of the four fly introns are shown; three of them correspond exactly with introns in the human homologue. (c) Western blot of pupal proteins probed for PP1β. Similar levels of PP1β protein are present in wild-type and mutant pupae. (d–g) Sequences of mutated regions in flw1 and flw6, with traces from an automatic sequencer below. (d,e) At the codon corresponding to Val284 (GTG) in (d) the wild type, (e) flw1 has GCG, encoding Ala. (f,g) At the codon corresponding to Tyr133 (TAC) in (f) the wild type, (g) flw6 has TTC, encoding Phe. Current Biology 2000 10, 269-272DOI: (10.1016/S0960-9822(00)00364-X)

Figure 2 Muscle defects in flw6 males. (a–d) IFMs; anterior is left, dorsal is uppermost. (a) Diagram of thoracic musculature (reproduced from [21] with permission). Black, DLMs; grey, DVMs. (b–d) Polarised light micrographs showing thoracic muscles of (b) wild-type, (c) flw6/Y, and (d) flw6/Y; P[hsp26-PP1β9C]/+ males. The latter express PP1β9C from the hsp26 promoter. IFMs are completely absent in (c) and as wild type in (d). (e,f) Larval body wall muscles (stained blue in a histochemical reaction for β-galactosidase expressed by a myosin heavy chain–LacZ reporter gene) of (e) wild-type and (f) flw6/Y males. Arrows point to poorly attached, remnant muscles in the mutant (f) and to the corresponding region in (e). Asterisks mark a region devoid of muscles in the mutant (f) and the corresponding region in (e). Anterior is to the top and the dorsal midline is right of centre. Current Biology 2000 10, 269-272DOI: (10.1016/S0960-9822(00)00364-X)

Figure 3 Wing defects in flw mutants. (a) Wild type; (b)flw1/Y; (c)flw6/Y; (d) flw6/Y ; P[hsp26-PP1β9C]/+. Wings of flw6/Y flies are severely crumpled and/or blistered; this defect is completely rescued by the PP1β9C expression construct. Current Biology 2000 10, 269-272DOI: (10.1016/S0960-9822(00)00364-X)