topic11_shocktube_problem

Slides:



Advertisements
Similar presentations
Finite Difference Discretization of Hyperbolic Equations: Linear Problems Lectures 8, 9 and 10.
Advertisements

Computational Modeling for Engineering MECN 6040
Chapter 8 Elliptic Equation.
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering.
Computational Fluid Dynamics I PIW Numerical Methods for Parabolic Equations Instructor: Hong G. Im University of Michigan Fall 2005.
Numerical Methods for Partial Differential Equations
Numerical Solution of Ordinary Differential Equation
Euler’s Equation in Fluid Mechanics. What is Fluid Mechanics? Fluid mechanics is the study of the macroscopic physical behavior of fluids. Fluids are.
ME 231 Thermofluid Mechanics I Navier-Stokes Equations.
© Arturo S. Leon, BSU, Spring 2010
Simpson Rule For Integration.
1 LES of Turbulent Flows: Lecture 14 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Fall 2014.
Chapter 9 Risk Management of Energy Derivatives Lu (Matthew) Zhao Dept. of Math & Stats, Univ. of Calgary March 7, 2007 “ Lunch at the Lab ” Seminar.
Numerical Methods Part: Simpson Rule For Integration.
1 EEE 431 Computational Methods in Electrodynamics Lecture 4 By Dr. Rasime Uyguroglu
Akram Bitar and Larry Manevitz Department of Computer Science
Engineering Analysis – Computational Fluid Dynamics –
Engineering Analysis – Computational Fluid Dynamics –
CIS888.11V/EE894R/ME894V A Case Study in Computational Science & Engineering We will apply several numerical methods to find a steady state solution of.
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering Introduction and Scope.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. by Lale Yurttas, Texas A&M University Chapter 271 Boundary-Value.
Dr. R. Nagarajan Professor Dept of Chemical Engineering IIT Madras
Warm Up. Solving Differential Equations General and Particular solutions.
Lecture 40 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Lecture 39 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Advanced Numerical Techniques Mccormack Technique CFD Dr. Ugur GUVEN.
Solving Linear Systems by Substitution
The Prediction of Low Frequency Rumble in Combustion Systems
Solution to Homework 2 Chapter 2
Finite Difference Methods
Manipulator Dynamics 1 Instructor: Jacob Rosen
Shock Wave/ Turbulent Boundary Layer Interactions on a Cylinder
ME/AE 339 Computational Fluid Dynamics K. M. Isaac Topic1_ODE
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 11/13/2018
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 11/15/2018
CFD – Fluid Dynamics Equations
ME/AE 339 Computational Fluid Dynamics K. M. Isaac Topic2_PDE
Topic 6 FluidFlowEquations_Introduction
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 12/3/2018
AIAA OBSERVATIONS ON CFD SIMULATION UNCERTAINITIES
Topic 3 Discretization of PDE
topic13_grid_generation
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac
topic8_NS_vectorForm_F02
dse +; thus dp0 −, or p0 decreases.
topic13_grid_generation
Numerical Analysis Lecture 37.
topic13_grid_generation
topic4: Implicit method, Stability, ADI method
topic4: Implicit method, Stability, ADI method
Topic 3 Discretization of PDE
topic16_cylinder_flow_relaxation
Topic 5 NavierStokes Equations
topic4: Implicit method, Stability, ADI method
Topic 6 NavierStokes Equations
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 2/28/2019
Topic9_Pressure_Correction
topic8_NS_vectorForm_F02
topic11_shocktube_problem
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 4/30/2019
Topic 8 Pressure Correction
topic4: Implicit method, Stability, ADI method
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac 7/24/2019
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac July 25, 2019
topic18_shock_tube_flow
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac
Topic 3 Discretization of PDE
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac
Akram Bitar and Larry Manevitz Department of Computer Science
Presentation transcript:

topic11_shocktube_problem AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR MacCormack’s method (6.3) Original (1969) method is 2nd order accurate (in space and time) explicit method. It is a modified form of the Lax-Wendroff scheme. Using MacCormack’s method we write Predictor step 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Insert Figure 6.2 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Predicted value, first order accurate Similar equations can be written for the predicted values of the Other variables in the U_bar vector. Note that the forward difference is used in Eq. (6.17) for the space derivative 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Corrector step First obtain a predicted value of the time derivative using backward difference for the space derivatives Now find average value of the time derivative as 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Now use Eq. (6.13) to calculate the variable at (n+1) Repeat the procedure to get the variable at all the grid points shown In Figure 6.2 The same procedure can be used for all the other variables of the solution vector U_bar, using forward difference for the predictor step and backward difference for the corrector step. Because of using forward difference for the predictor and backward differnce for the corrector step, the method can be shown to be 2nd order accurate. 2/25/2019 topic11_shocktube_problem

The Shock Tube Process (11.4.2) Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The Shock Tube Process (11.4.2) Insert Figure 11.5 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Consists of a high pressure chamber and a low pressure chamber separated by a diaphragm When the diaphragm is broken a wave pattern is established as shown In the figure Figure shows the flow at a certain time t1, when the waves haven’t Started reflecting from the tube ends Insert Figure 11.6 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall the following vector form of the equations   2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The above vectors can be modified for the shock tube problem. Since only one space dimension is present, the vectors can be shortened as follows 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall that, according to Stokes hypothesis Also recall that Therefore Also recall 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR If we neglect external heating, the J-vector on the RHS will be = 0. Therefore we can write 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Auxiliary relations for a perfect gas 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Calculate from 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

topic11_shocktube_problem Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem