Separation Columns (Distillation and absorption)

Slides:



Advertisements
Similar presentations
Batch Distillation.
Advertisements

Continuous Column Distillation
Absorption and Stripping
Mass Transfer for 4 th Year Chemical Engineering Department Faculty of Engineering Cairo University.
Chapter 3 Dynamic Modeling.
Goal 1: Design a flash drum
This method is based on the Lewis modification of the Sorel method, It assumes equimolal overflow in the rectifying section, in the stripping section,
CENG 221 Lecture 4. Multi-component Distillation (4.5 h)
School of Electrical Engineering
Pharmaceutical API Process Development and Design
Distillation of Binary Mixture
Miscellaneous CHEN 4470 – Process Design Practice Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 17 – Equipment.
Liquid-Liquid Equilibrium
NUMBER OF EQUILIBRIUM STAGES IN BINARY DISTILLATION
NUMBER OF EQUILIBRIUM STAGES IN BINARY DISTILLATION
CHEN 4470 – Process Design Practice Dr. Mario Richard Eden Department of Chemical Engineering Auburn University Lecture No. 3 – Overview of Mass Exchange.
Chapter 6 PHASE EQUILIBRIA
Batch Distillation Model By: Jason Hixson Jennifer Potter Wayne Johnson.
Batch Distillation Gavin Duffy School of Electrical Engineering Systems DIT Kevin St.
Paul Ashall 2007 Separation processes - general Mechanical separations e.g. filtration of a solid from a suspension in a liquid, centrifugation, screening.
Multi-component Distillation Prepared by Dr
Unit Operations Lecture 19
Controller Design Using CHEMCAD
ERT 313 BIOSEPARATION ENGINEERING DISTILLATION
FLASH CALCULATION A flash is a single-equilibrium stage distillation in witch a feed is partially vaporized to give a vapor richer in the most volatile.
Mass and Energy Balances – Stripping Section and Partial Reboiler
Flash Distillation Flash distillation is the simplest method of separation. A feed stream is “flashed” into a chamber or “flash drum” and the liquid and.
การออกแบบ โรงงานทาง วิศวกรรมเคมี (Chemical Engineering Plant Design) 3(3-0-6)
ERT 210/4 Process Control & Dynamics
Lecture 15: Batch Distillation 1 Batch Distillation Total condenser Overhead vapor Boilup N 2 1 Distillation Reflux drum Rectifying section stages Stripping.
Internal Column Balances Feed tray F V V L L Feed Equation: y = -{(L - L)/(V - V)}x + Fz f /(V-V) y = -(L f /V f )x + (F/V f )z f y = {q/(q-1)}x.
Chemstations, Inc – Houston, TX – – Short Cut - Fenske-Underwood-Gilliland - Limited design, Rating Tower - Rigorous.
Dr Saad Al-ShahraniChE 334: Separation Processes Absorption of Dilute Mixtures  Graphical Equilibrium Stage Method for Trayed Tower  Consider the countercurrent-flow,
McCabe Thiele Graphical Equilibrium-Stage
ERT 313 BIOSEPARATION ENGINEERING DISTILLATION Prepared by: Miss Hairul Nazirah Abdul Halim.
THERMODYNAMICS OF SEPARATION OPERATIONS
The Simplest Phase Equilibrium Examples and Some Simple Estimating Rules Chapter 3.
Distillation... A Separation Method. Background Concepts - Definitions Vapor Pressure – Gas pressure created by the molecules of a liquid which have acquired.
“Chemical Engineering Equilibrium Separations”
THERMODYNAMICS OF SEPARATION OPERATIONS
Other Sources of Enthalpy Data Specific heats tabulated (see Appendix of thermodynamic textbook) and graphical data Riedel Equation  H n /RT n = 1.092(InP.
1. Write down the vapor-liquid equilibrium (VLE) equations for a binary system assuming that the vapor phase is ideal and the liquid phase follows Raoult’s.
McCabe Thiele Part Two Today we will discuss:
Distillation Vapor Liquid Equilibrium Relations
CHEMCAD User Meeting Berlin, September 2015
Unit Operations Laboratory Distillation Analysis Seminar Super Team 2005 Monday, December 5, :30 PM.
S, S&L Chapt. 8 T &S Chapter 16 and 17
Multiple Feed and Side Stream
Natural Gas Processing I Chapter 9 Fractionation
Separation Columns (Distillation, Absorption and Extraction)
Process Equipment Design Distillation Columns
Process Equipment Design and Heuristics – Heat Exchangers
Exercise 1 HYSYS Review 11/12/ Design & Analysis II.
ChEN 5253 Design II Chapter 13 Terry A. Ring University of Utah
Liquid-Liquid Extraction
Distillation Column – External Balance
Methodology for Complete McCabe-Thiele Solution
Separation Trains Azeotropes
Overall Review CHE 1008 Chapters 1-5, 6.4, 7, 9, 11, 12, 15.
Flash Distillation Flash distillation is the simplest method of separation. A feed stream is “flashed” into a chamber or “flash drum” and the liquid and.
Separation Columns (Distillation and absorption)
Limiting Conditions – Reflux Ratios
Separation Columns (Distillation, Absorption )
Absorption and Stripping
Multi-Component Distillation (MCD) – The Problem
MASS TRANSFER II DISTILLATION.
12. Heat Exchangers Chemical engineering 170.
Separation Columns (Distillation, Absorption and Extraction)
Lecture Notes Week 1 ChE 1008 Spring Term (03-2).
Miscellaneous CHEN 4470 – Process Design Practice
Presentation transcript:

Separation Columns (Distillation and absorption) Dr. Kh. Nasrifar Department of Chemical and Petrochemical Engineering

Batch Distillation

Major types of batch distillation Simple batch distillation Multistage batch distillation

Reasons to use batch distillation Small capacity (e.g., specialty chemicals) Intermittent need Test run for a new product Up-stream operations are batch (e.g., alcoholic spirits) Feed inappropriate for continuous distillation (suspended solids) Feed varies widely in composition

Simple batch distillation no rectification ( = no column) Characteristics: no column; a single equilibrium stage (= the still pot) single charge (F) to still pot at time = 0 vapor is withdrawn continuously composition of liquid in still pot (xW) changes continuously composition of liquid distillate (xD) changes continuously time t: W, xW V, y D, xD time 0: F, xF still pot with heater

Rayleigh equation TMB: F = Wfinal + Dtotal time t: W, xW y = xD V, y D, xD TMB: F = Wfinal + Dtotal CMB: FxF = WfinalxW,final + DtotalxD,avg Specify F, xF and xW,final or xD,avg Leaves 3 unknowns: Wfinal, Dtotal and xW,final or xD,avg Need one more equation: time 0: F, xF still pot, with heater dCMB: - xDdW = - d(WxW) (vapor withdrawn) = (change in still pot composition) chain rule: - xDdW = - WdxW - xWdW WAIT! K is not constant; K = K(T) Rayleigh equation where xD = f(xW)

Integration of the Rayleigh equation 1/(xD – xD) x = xW Numerical integration: Constant relative volatility: xW,final • • xF Specify F, xF, and either Wfinal or xW,final. Simpson’s rule:

Batch steam distillation Used for thermally fragile organics (e.g., essential oils in perfume industry), and for slurries/sludges containing organics. W, xW V, y D, xD = 1 A single charge (F) added to still pot at time = 0. Steam is added continuously. H2O(l) (to waste) still pot, no heater steam If W, D are immiscible with water, we have a heterogeneous azeotrope. H2O(l) D.o.F. = 2 components – 3 phases + 2 = 1 Fix Ptotal, then T cannot vary! constant T < Tbp(H2O) How much steam is required? Both H2O and organic vaporize well below their single-component boiling points. Also, constant vapor composition. Raoult’s Law: Ptotal = P*WxW + P*H2O Steam also needed to heat and vaporize the material in the still pot.

Batch distillation with rectification TMB: Vj+1 = Lj + D CMB: Vj+1yj+1 = Ljxj + DxD • both are time-dependent • either D or xD (or both) change over the course of the distillation time t: W, xW y1 = x0 = xD V1, y1 D, xD L0, x0 stage 1 y1 ≠ K / xW CMO: Vj+1 = Vj and Lj = Lj-1 operating line equation: y = (L/V) x + (1 - (L/V)) xD y = x = xD slope = L/V • actually a family of operating lines, since L/V or xD (or both) change over the course of the distillation • therefore the operating line moves on the M-T diagram stage j Vj+1, yj+1 Lj, xj stage N VN+1, xN+1 LN, xN time 0: F, xF still pot, with heater stage N+1

Choice of operating methods Constant reflux ratio (variable xD) y=x Constant distillate composition (variable R) VLE y=x •xD •xD total reflux • time VLE time • • • distillation must end when (or before) xD,avg = xF distillation must end when (or before) R = ∞ (L/V = 1) Easy to monitor and control. Harder to monitor and control (need to detect xD on-stream and adjust R accordingly). Can solve graphically, if we assume no liquid holdup on the column.

Multistage batch distillation with constant R Given F, xF, xW,final, R and N, find Dtotal, xD,avg y=x VLE 1 2 For N = 2 (incl. reboiler) • xD,4 •xD,1 •xD,2 •xD,3 • • 1. For an arbitrary set of xD values, draw a series of parallel operating lines, each with slope R/(R+1) • 1 2 xW,2 • 1 2 xW,3 2. Step off N stages on each operating line to find its corresponding xW 3. Perform numerical integration: plot 1/(xD-xW) vs xW limits: xF, xW,final • 1 2 xW,4 4. Calculate Wfinal using Rayleigh equation xW,1 5. Solve mass balances for Dtotal and xD,avg If xD,avg is specified instead of xW,final: guess xW,final, calculate xD,avg, iterate.

Operating time at constant R (D) depends on vapor flow rate (V), which depends on boilup rate shut down, cleaning and recharging still pot, restart • if the boilup rate is constant, then V is constant, and D will be constant condenser TMB: • V = Vmax when vapor velocity u = uflood • uflood depends on column diameter • typically, operate at D = 0.75 Dmax

Calculating column diameter We want to use the smallest diameter that will not cause the column to flood. where σ is surface tension, ρL and ρV are liquid and vapor densities, respectively. Csb,flood is the capacity factor, depends on flow parameter FP and tray spacing; obtain from graphical correlation. where η is the fraction of the column cross-sectional area available for vapor flow (i.e., column cross-sectional area minus downcomer area).

Multistage batch distillation with constant xD Given F, xF, xD (maybe) xw,final and N, find Rinitial, Rmin, xW,min y=x VLE N = ∞, R = Rmin • •xD (L/V)initial (L/V)min 1. Draw trial op. lines and step off N stages to end at xF This is trial-and-error, except for N = 2, or N = ∞ (Rmin) xF • • xW.min 3. Find xW,min using (L/V) = 1. Rayleigh equation not needed! Verify xW,final > xW,min. Is xWfinal required? 4. Solve mass balance for Wfinal and Dtotal. N = 2 (incl. reboiler)

Operating time with constant xD mass balance: x = xW Numerical integration: xW,final • xF 1. Draw a series of arbitrary operating lines, each with a different slope L/V 2. Step off N stages on each operating line to find its corresponding xW 3. Perform numerical integration (plot graph, use Simpson’s rule) 4. Calculate toperating

Effect of liquid holdup on the column Optimal control • use optimal, time-dependent reflux ratio (not constant R, not constant xD) • more energy-efficient • useful for difficult separations Effect of liquid holdup on the column • usually, we can assume vapor holdup is negligible • liquid holdup causes xw to be lower than it would be in the absence of holdup • causes the degree of separation to decrease To assess the effect on batch distillation: • measure the amount of holdup at total reflux • perform computational simulation Next year: add heater and condenser duties