Laura E. Bagge, Karen J. Osborn, Sönke Johnsen  Current Biology 

Slides:



Advertisements
Similar presentations
Date of download: 6/23/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the dye sensitized solar cell (DSSC) design consists of multilayer.
Advertisements

Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Biological Bifocal Lenses with Image Separation
Volume 94, Issue 12, Pages (June 2008)
Muscle Development: Nucleating Microtubules at the Nuclear Envelope
Volume 3, Issue 4, Pages (October 2017)
Volume 27, Issue 11, Pages R447-R448 (June 2017)
Volume 24, Issue 23, Pages R1109-R1111 (December 2014)
Volume 26, Issue 10, Pages (May 2016)
Vision and the light environment
Pericycle Current Biology
Visual Categorization: When Categories Fall to Pieces
Jamie L. Baldwin Fergus, Sönke Johnsen, Karen J. Osborn 
Visual Development: Learning Not to See
Palaeontology: In a Flap About Flaps
Neutrophil extracellular traps
Biological Bifocal Lenses with Image Separation
A Unique Advantage for Giant Eyes in Giant Squid
Visual Perception: Lightness in a High-Dynamic-Range World
Volume 18, Issue 9, Pages (May 2008)
Molecular rulers? Current Biology
Volume 25, Issue 10, Pages R403-R404 (May 2015)
Motor Networks: Shifting Coalitions
Context-dependent lateralized feeding strategies in blue whales
Volume 25, Issue 23, Pages R1114-R1116 (December 2015)
Visual Attention: Size Matters
Mechanical Forces of Fission Yeast Growth
Box Jellyfish Use Terrestrial Visual Cues for Navigation
Volume 26, Issue 16, Pages R752-R754 (August 2016)
Zoology: Invertebrates that Parasitize Invertebrates
Volume 24, Issue 2, Pages R60-R61 (January 2014)
Evolution: Mirror, Mirror in the Pond
Volume 17, Issue 20, Pages R863-R864 (October 2007)
Keram Pfeiffer, Uwe Homberg  Current Biology 
Víctor Huertas, David R. Bellwood  Current Biology 
Volume 24, Issue 7, Pages R262-R263 (March 2014)
Volume 27, Issue 21, Pages e3 (November 2017)
Perception Matches Selectivity in the Human Anterior Color Center
Jamie L. Baldwin Fergus, Sönke Johnsen, Karen J. Osborn 
Volume 15, Issue 13, Pages R483-R484 (July 2005)
Volume 23, Issue 21, Pages (November 2013)
Pericycle Current Biology
NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE AND
Visual Development: Learning Not to See
Egg-Laying Substrate Selection for Optimal Camouflage by Quail
Centrosome Size: Scaling Without Measuring
Martijn Barendregt, Ben M. Harvey, Bas Rokers, Serge O. Dumoulin 
The cause of colouration in the ctenophore Beroë cucumis
Visual Adaptation of the Perception of Causality
Volume 3, Issue 4, Pages (October 2017)
Gregory S. Watson, Sverre Myhra, Bronwen W. Cribb, Jolanta A. Watson 
Volume 21, Issue 9, Pages (September 2014)
Volume 19, Issue 9, Pages R353-R355 (May 2009)
Kevin R. Foster, Thomas Bell  Current Biology 
Visual Circuits: Division of Labor Revealed
Candida albicans Biofilms: More Than Filamentation
Visual Perception: Understanding Visual Cues to Depth
Visual Optics: Remarkable Image-Forming Mirrors in Scallop Eyes
Organelle Evolution: What's in a Name?
A Visual Sense of Number
Muscle Development: Nucleating Microtubules at the Nuclear Envelope
Attention-Dependent Representation of a Size Illusion in Human V1
Nadine Krüger, Iva M. Tolić-Nørrelykke  Current Biology 
Vision and the light environment
Basal bodies Current Biology
Vision: Attending the Invisible
Volume 21, Issue 9, Pages (September 2014)
Encoding Light Intensity by the Cone Photoreceptor Synapse
Volume 18, Issue 5, Pages R198-R202 (March 2008)
A way of selectively degrading colour constancy demonstrates the experience dependence of colour vision  Eli Brenner, Frans W. Cornelissen  Current Biology 
Presentation transcript:

Nanostructures and Monolayers of Spheres Reduce Surface Reflections in Hyperiid Amphipods  Laura E. Bagge, Karen J. Osborn, Sönke Johnsen  Current Biology  Volume 26, Issue 22, Pages 3071-3076 (November 2016) DOI: 10.1016/j.cub.2016.09.033 Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 1 Scanning Electron Micrographs of the Cuticular Surfaces of Hyperiid Amphipods (A) Cystisoma spp. (n = 5) appendages were covered by an ordered array of nanoprotuberances 200 ± 20 nm tall. (B) Cystisoma sp. (n = 1) had dorsal and ventral surfaces covered with an ordered array of cuticular nanoprotuberances 50 ± 4 nm tall. (C–H) Spheres of various diameter covering the body surfaces of hyperiids. (C) Cystisoma spp. (n = 5), 52 ± 7 nm diameter. (D) Lanceola pelagica (n = 2), 70 ± 9 nm diameter. (E) Platyscelus armatus (n = 2), 80 ± 10 nm diameter. (F) Leptocotis spp. (n = 3), 110 ± 25 nm diameter. (G) Glossocephalus milneedwardsi (n = 2), 220 ± 30 nm diameter. (H) Paraphronima gracilis (n = 2), 240 ± 25 nm diameter. (I) Phronima spp. (n = 5), 320 ± 15 nm diameter. The scale bars represent 1 μm. See Figure S1 for ex situ (maximized for visibility) photographs of hyperiids and Figure S2 for SEMs demonstrating coverage of the nanoprotuberances and spheres. Current Biology 2016 26, 3071-3076DOI: (10.1016/j.cub.2016.09.033) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 2 Reflectance of a Flat, Clean Hyperiid Cuticle (A) Transfer matrix predictions of cuticle reflectance in seawater for a flat, clean, chitinous cuticle. (B) The Weber contrast of flat, clean cuticle viewed at different angles (looking straight up to looking straight down), demonstrating that reflectance from the cuticle (values from A) may significantly increase the hyperiid’s contrast and break camouflage. The wavelength of the incident light is assumed to be 480 nm, the depth is assumed to be greater than 200 m with a vertically symmetric light field, and we only consider reflections of the dominating downward radiance. Background radiance was calculated using measured inherent optical properties and radiative transfer software [5, 15]. The inset schematic visualizes these assumptions, showing downwelling light hitting a cuticle surface at different angles of incidence with 0° being perpendicular to the cuticle. Current Biology 2016 26, 3071-3076DOI: (10.1016/j.cub.2016.09.033) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 3 Transfer Matrix Predictions of Cuticle Reflectance in Seawater and the Reduction in Reflection as Compared to a Clean, Flat, Chitinous Cuticle Transfer matrix predictions of cuticle reflectance in seawater (left) and the reduction in reflection as compared to a clean, flat, chitinous cuticle (right) for the nanoprotuberances on Cystisoma appendages (A and B), the 52-nm-thick layer found on the cuticle of Cystisoma (C and D), the 110-nm-thick layer found on the cuticle of Leptocotis (E and F), and the 320-nm-thick layer found on the cuticle of Phronima (G and H). See Figure S3 for additional predictions. Current Biology 2016 26, 3071-3076DOI: (10.1016/j.cub.2016.09.033) Copyright © 2016 Elsevier Ltd Terms and Conditions

Figure 4 Models of the Effect of Cuticular Nanostructures and Spheres on Crypsis (A) Reduction of reflectance as a function of sphere diameter and effective refractive index for 480 nm light incident at a 45° angle. The blue markers represent the seven species-specific measured diameters of the spheres. (B) The Weber contrast of a hyperiid cuticle with the observed nanostructures and spheres and without (bare cuticle) for comparison. As in Figure 2B, light is assumed to have a narrow spectral distribution centered on 480 nm, and depth is assumed to be greater than 200 m with a vertically symmetric light field. Current Biology 2016 26, 3071-3076DOI: (10.1016/j.cub.2016.09.033) Copyright © 2016 Elsevier Ltd Terms and Conditions