Folding of the Protein Domain hbSBD

Slides:



Advertisements
Similar presentations
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Advertisements

A Protein Dynamics Study of Photosystem II: The Effects of Protein Conformation on Reaction Center Function  Sergej Vasil’ev, Doug Bruce  Biophysical.
(Un)Folding Mechanisms of the FBP28 WW Domain in Explicit Solvent Revealed by Multiple Rare Event Simulation Methods  Jarek Juraszek, Peter G. Bolhuis 
Young Min Rhee, Vijay S. Pande  Biophysical Journal 
Geometrical Properties of Gel and Fluid Clusters in DMPC/DSPC Bilayers: Monte Carlo Simulation Approach Using a Two-State Model  István P. Sugár, Ekaterina.
Use of Decoys to Optimize an All-Atom Force Field Including Hydration
Kinetic Hysteresis in Collagen Folding
Role of Hydration Water in Protein Unfolding
Folding Pathways of Prion and Doppel
Investigating How Peptide Length and a Pathogenic Mutation Modify the Structural Ensemble of Amyloid Beta Monomer  Yu-Shan Lin, Gregory R. Bowman, Kyle A.
Volume 108, Issue 3, Pages (February 2015)
Volume 102, Issue 2, Pages (January 2012)
Volume 95, Issue 6, Pages (September 2008)
Volume 86, Issue 2, Pages (February 2004)
Volume 96, Issue 5, Pages (March 2009)
Phase Transitions in Biological Systems with Many Components
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Sangwook Wu, Pavel I. Zhuravlev, Garegin A. Papoian 
Jamie M. Dettler, Robert Buscaglia, Vu H. Le, Edwin A. Lewis 
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
Volume 99, Issue 1, Pages (July 2010)
Meng Qin, Jian Zhang, Wei Wang  Biophysical Journal 
Volume 86, Issue 4, Pages (April 2004)
Michel A. Cuendet, Olivier Michielin  Biophysical Journal 
Volume 86, Issue 4, Pages (April 2004)
Volume 96, Issue 2, Pages (January 2009)
Volume 99, Issue 10, Pages (November 2010)
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
A Second Look at Mini-Protein Stability: Analysis of FSD-1 Using Circular Dichroism, Differential Scanning Calorimetry, and Simulations  Jianwen A. Feng,
Gustav Persson, Per Thyberg, Jerker Widengren  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 84, Issue 6, Pages (June 2003)
Volume 92, Issue 6, Pages (March 2007)
Volume 95, Issue 9, Pages (November 2008)
Conformational Transition Pathways Explored by Monte Carlo Simulation Integrated with Collective Modes  Nigar Kantarci-Carsibasi, Turkan Haliloglu, Pemra.
The Complex Kinetics of Protein Folding in Wide Temperature Ranges
Kinetic Hysteresis in Collagen Folding
Comparative Studies of Microtubule Mechanics with Two Competing Models Suggest Functional Roles of Alternative Tubulin Lateral Interactions  Zhanghan.
Ivan Coluzza, Daan Frenkel  Biophysical Journal 
Jason K. Cheung, Thomas M. Truskett  Biophysical Journal 
Carlos Mattea, Johan Qvist, Bertil Halle  Biophysical Journal 
Grischa R. Meyer, Justin Gullingsrud, Klaus Schulten, Boris Martinac 
Yuguang Mu, Lars Nordenskiöld, James P. Tam  Biophysical Journal 
Thermodynamic Characterization of the Unfolding of the Prion Protein
An Effective Solvent Theory Connecting the Underlying Mechanisms of Osmolytes and Denaturants for Protein Stability  Apichart Linhananta, Shirin Hadizadeh,
Domain Formation in Model Membranes Studied by Pulsed-Field Gradient-NMR: The Role of Lipid Polyunsaturation  Andrey Filippov, Greger Orädd, Göran Lindblom 
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
A Mesoscale Model of DNA and Its Renaturation
Molecular Mechanism for Stabilizing a Short Helical Peptide Studied by Generalized- Ensemble Simulations with Explicit Solvent  Yuji Sugita, Yuko Okamoto 
Multiple Folding Pathways of the SH3 Domain
Feng Ding, Sergey V. Buldyrev, Nikolay V. Dokholyan 
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 111, Issue 11, Pages (December 2016)
Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 
Volume 13, Issue 9, Pages (September 2005)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
Volume 94, Issue 7, Pages (April 2008)
Dependence of Protein Folding Stability and Dynamics on the Density and Composition of Macromolecular Crowders  Jeetain Mittal, Robert B. Best  Biophysical.
Hydrophobic Core Formation and Dehydration in Protein Folding Studied by Generalized-Ensemble Simulations  Takao Yoda, Yuji Sugita, Yuko Okamoto  Biophysical.
Amir Marcovitz, Yaakov Levy  Biophysical Journal 
Kinetic Folding Mechanism of Erythropoietin
Volume 94, Issue 12, Pages (June 2008)
Volume 86, Issue 2, Pages (February 2004)
Volume 93, Issue 8, Pages (October 2007)
Ivan Coluzza, Saskia M. van der Vies, Daan Frenkel  Biophysical Journal 
Volume 94, Issue 11, Pages (June 2008)
Seongwon Kim, Takako Takeda, Dmitri K. Klimov  Biophysical Journal 
The Stochastic Dynamics of Filopodial Growth
Presentation transcript:

Folding of the Protein Domain hbSBD Maksim Kouza, Chi-Fon Chang, Shura Hayryan, Tsan-hung Yu, Mai Suan Li, Tai-huang Huang, Chin-Kun Hu  Biophysical Journal  Volume 89, Issue 5, Pages 3353-3361 (November 2005) DOI: 10.1529/biophysj.105.065151 Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 1 Ribbon representation of the structure of hbSBD domain. The helix region H1 and H2 include residues Pro-12–Glu-20 and Lys-39–Glu-47, respectively. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 2 Dependence of the mean residue molar ellipticity on the wave length for 11 values of temperatures between 278 and 363K. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 3 Temperature dependence of the fraction of folded conformations fN, obtained from the ellipticity θ by Eq. 2, for wave lengths λ=208 (●), 212 (■), and 222nm (♦). The solid line corresponds to the two-state fit given by Eq. 2 with ΔCp≠0. We obtained TG=TF=317.8±1.9K, ΔHG=19.67±2.67kcal/mol and ΔCp=0.387±0.054. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 4 The dependence of fN for various sets of parameters. The dotted and dashed curves correspond to the thermodynamic parameters presented on the first and the second rows of Table 1, respectively. Open circles refer to simulation results for the Go model. The solid curve is the two-state fit (ΔCp=0), which gives ΔHG=11.46kcal/mol and TF=317.9. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 5 The upper part refers to the temperature dependence of dfN/dT obtained by the simulations (dashed curve) and the CD experiments (solid curve). The experimental curve is plotted using two-state parameters with ΔCp=0 (see the second row on Table 1). The temperature dependence of the heat capacity CV(T) is presented in the lower part. The dotted lines illustrate the baseline subtraction. The results are averaged over 20 samples. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 6 (a) The dependence of free energy on the number of native contacts Q at T=TF. The typical structures of the denaturated state, transition state, and folded state are also drawn. The helix regions H1 (green) and H2 (orange) of the TS structure involve residues 13–19 and 39–48, respectively. For the FS structure H2 is the same as for the TS structure but H1 has two residues more (13–21). (b) Distributions of RMSD for three ensembles shown in panel a. The average values of RMSD are equal to 9.8, 4.9, and 3.2Å for the DS, TS, and FS, respectively. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions

Figure 7 The semilogarithmic plot of the time dependence of the fraction of unfolded trajectories at T=TF. The distribution Pu(t) was obtained from first passage times of 400 trajectories, which start from random conformations. The straight line corresponds to the fit ln Pu(t)=−t/τF, where τF=0.1μs. Biophysical Journal 2005 89, 3353-3361DOI: (10.1529/biophysj.105.065151) Copyright © 2005 The Biophysical Society Terms and Conditions