1/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia.

Slides:



Advertisements
Similar presentations
PID v2 and v4 from Au+Au Collisions at √sNN = 200 GeV at RHIC
Advertisements

Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
1 Chi-Square Test -- X 2 Test of Goodness of Fit.
Hypothesis testing and confidence intervals by resampling by J. Kárász.
1 A novel method of looking for the parity violation signal N. N. Ajitanand (SUNYSB Nuclear Chemistry) for the PHENIX Collaboration Joint CATHIE/TECHQM.
Recombination for JET Shower MC: Status and Discussion Rainer Fries Texas A&M University JET NLO & MC Meeting Wayne State University, August 23, 2013 On.
Mach Cone Studies in (3+1)d Ideal Hydrodynamics Barbara Betz, Philip Rau, Dirk Rischke, Horst Stöcker, Giorgio Torrieri Institut für Theoretische Physik.
Investigations on Jet Evolution in (3+1)d Ideal Hydrodynamics Barbara Betz, Dirk Rischke, Horst Stöcker, Giorgio Torrieri Institut für Theoretische Physik.
STAR Patricia Fachini QM20081 ρ 0 Production at High p T in Central Au+Au and p+p collisions at  s NN = 200 GeV in STAR STAR Patricia Fachini Brookhaven.
Descriptive statistics Experiment  Data  Sample Statistics Experiment  Data  Sample Statistics Sample mean Sample mean Sample variance Sample variance.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Resonance Dynamics in Heavy Ion Collisions 22nd Winter Workshop on Nuclear Dynamics , La Jolla, California Sascha Vogel, Marcus Bleicher UrQMD.
1 Bose-Einstein Correlations in hadronic W decays at LEP Nick van Remortel University of Antwerpen Belgium.
Recent Developments in THERMUS “The Wonders of Z ” Spencer Wheaton Dept of Physics University of Cape Town.
Direct photon production in pp and AA collisions 合肥, Dec 5 - 7, 2009 刘复明 华中师范大学粒子物理研究所 FML, T.Hirano, K.Werner, Y. Zhu, Phys.Rev.C79:014905,2009. FML,
Introduction to Statistics − Day 2
Current status of the long- range correlations analysis in Be+Be at 150 AGeV/c E. Andronov, A. Seryakov NA61/NA49 Collaboration meeting Dubna, 10/04/14.
1 Paul Chung ( for the PHENIX Collaboration ) Nuclear Chemistry, SUNY, Stony Brook Evidence for a long-range pion emission source in Au+Au collisions at.
REGGAE – Generator for Uniform Filling of LIPS Ivan Melo, Boris Tomášik, Michal Mereš, Vlado Balek, Vlado Černý Zimanyi Winter School
Computational Lab in Physics: Final Project Monte Carlo Nuclear Collisions: Glauber Model.
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
Uniovi1 Some distributions Distribution/pdfExample use in HEP BinomialBranching ratio MultinomialHistogram with fixed N PoissonNumber of events found UniformMonte.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
Uniform Filling of Multiparticle Phase Space Ivan Melo, Boris Tomášik, Michal Mereš, Vlado Balek, Vlado Černý Seminár Bratislava
Christof Roland / MITSQM 2004September 2004 Christof Roland / MIT For the NA49 Collaboration Strange Quark Matter 2004 Capetown, South Africa Event-by-Event.
Statistical Model Predictions for p+p and Pb+Pb Collisions at LHC Ingrid Kraus Nikhef and TU Darmstadt.
Do small systems equilibrate chemically? Ingrid Kraus TU Darmstadt.
Lecture 10 : Statistical thermal model Hadron multiplicities and their correlations and fluctuations (event-by-event) are observables which can provide.
Study of Pentacene clustering MAE 715 Project Report By: Krishna Iyengar.
BEC from "inside" O.Utyuzh The Andrzej Sołtan Institute for Nuclear Studies (SINS), Warsaw, Poland * In collaboration with G.Wilk and Z.Wlodarczyk.
1/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University,
Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDFPage 1 The “Underlying Event” in Run 2 at CDF  Study the “underlying event” as defined by.
V.Petracek TU Prague, UNI Heidelberg GSI Detection of D +/- hadronic 3-body decays in the CBM experiment ● D +/- K  B. R. 
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Report on LHT at the LHC ~ Some results from simulation study ~ Shigeki Matsumoto (Univ. of Toyama) 1.What kinds of LHT signals are expected, and how accurately.
Francesco Noferini Bologna University Erice, Italy 31 st August 2006 Two-particle correlations: from RHIC to LHC.
Feasibility of J/ψ studies by MPD detector Alla Maevskaya, Alexei Kurepin INR RAS Moscow NICA Roundtable Workshop 11 September 2009.
A Blast-wave Model with Two Freeze-outs Kang Seog Lee (Chonnam Nat’l Univ.)  Chemical and thermal analysis, done in a single model HIM
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Bulk properties of the system formed in Au+Au collisions at √s NN = 14.5 GeV using the STAR detector at RHIC Vipul Bairathi (for the STAR Collaboration)
Christof Roland / MITQuark Matter 2004January 2004 Christof Roland / MIT For the NA49 Collaboration Quark Matter 2004 Oakland,CA Event-by-Event Fluctuations.
1 Introduction to Statistics − Day 2 Glen Cowan Lecture 1 Probability Random variables, probability densities, etc. Brief catalogue of probability densities.
Nuclear Size Fluctuations in Nuclear Collisions V.Uzhinsky, A.Galoyan The first RHIC result – Large elliptic flow of particles.
PHENIX results on centrality dependence of yields and correlations in d+Au collisions at √s NN =200GeV Takao Sakaguchi Brookhaven National Laboratory for.
Implications for LHC pA Run from RHIC Results CGC Glasma Initial Singularity Thermalized sQGP Hadron Gas sQGP Asymptotic.
Charged and Neutral Kaon correlations in Au-Au Collisions at sqrt(s_NN) = 200 GeV using the solenoidal tracker at RHIC (STAR) Selemon Bekele The Ohio State.
Jet Hadronization in Vacuum and in the Medium Rainer Fries Texas A&M University Quark Matter 2015 Kobe, September 28, 2015 With Kyongchol Han Che Ming.
G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Statistical Data Analysis: Lecture 5 1Probability, Bayes’ theorem 2Random variables and.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
24 June 2007 Strangeness in Quark Matter 2007 STAR 2S0Q0M72S0Q0M7 Strangeness and bulk freeze- out properties at RHIC Aneta Iordanova.
Recent Flow Results From PHENIX Paul Stankus Oak Ridge National Lab WWND 9 April 2012.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
High p T hadron production and its quantitative constraint to model parameters Takao Sakaguchi Brookhaven National Laboratory For the PHENIX Collaboration.
Simulations on the Event-by-event Fluctuations of the Particle Yield Ratios D. Kresan, V. Friese GSI, Darmstadt, Germany Correlations and Fluctuations.
1 Strange Resonance Production in p+p and Au+Au Collisions at RHIC energies. Christina Markert, Yale University for the STAR Collaboration QM2004,
Hadron production and QCD coherence at LEP Marco Cuffiani University of Bologna and INFN (Italy) on behalf of the OPAL Collaboration QCD coherence and.
1/10 Boris Tomášik: Contribution of hard processes to elliptic flow Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia and Czech Technical.
Blast-wave fits with resonances to pt spectra from Pb+Pb collisions at √sNN = 2.76 TeV Ivan Meloa,b, Boris Tomášikb,c aŽilinská Univerzita, Žilina, Slovakia.
Ivan Melo (Žilina) in collaboration with
Freeze-out state from analysis of transverse momentum spectra in Pb+Pb collisions at 2.76 ATeV Ivan Meloa,c, Boris Tomášika,b aUniverzita Mateja Bela,
P. Castorina Dipartimento di Fisica ed Astronomia
Pion femtoscopy from ALICE
Ivan Melo, Mikuláš Gintner Žilina in collaboration with
Reaction Dynamics in Near-Fermi-Energy Heavy Ion Collisions
Introduction Results Methods Conclusions
Scaling Properties of Identified Hadron Transverse Momentum Spectra
Fu Jinghua Institute of Particle Physics, Huazhong Normal University
A Blast-wave Model with two Freeze-outs
Dipartimento Interateneo di Fisica, Bari (Italy)
Hiroshi Masui / Univ. of Tsukuba
Presentation transcript:

1/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University, Prague, Czech Republic NICA Round Table Workshop September 10, 2009 Identifying fireball fragmentation with the Kolmogorov-Smirnov test

2/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Droplets and rapidity distributions rapidity distribution in a single event y dN/dy y without droplets with droplets If we have droplets, each event will look differently

3/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test The measure of difference between events Kolmogorov–Smirnov test (general intro): Are two empirical distributions generated from the same underlying probability distribution? (null hypothesis) y 0 1 D maximum distance D measures the difference of two empirical distributions

4/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Kolmogorov-Smirnov: theorems How are the D's distributed? Smirnov (1944): If we have two sets of data generated from the same underlying distribution, then D 's are distributed according to This is independent from the underlying distribution! For each t=D we can calculate For events generated from the same distribution, Q 's will be distributed uniformly.

5/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Null hypothesis All events within the selected centrality class are evolve according to the same scenario and the bulk evolves smoothly from the beginning to the freeze out. (Like in hydrodynamic simulation.)

6/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test DRoplet and hAdron GeneratOr for Nuclear collisions DRAGON: MC generator of (momenta and positions of) particles [BT: Computer Physics Communications 180 (2009) 1642, arXiv: [nucl-th]] some particles are emitted from droplets (clusters) if no droplet formation is assumed, then similar to THERMINATOR droplets are generated from a blast-wave source (tunable parameters) tunable size of droplets: Gamma-distributed or fixed droplets decay exponentially in time (tunable time, T) no overlap of droplets also directly emitted particles (tunable amount) chemical composition: equilibrium, resonances rapidity distribution: uniform or Gaussian possible OSCAR output

7/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Results from simulation: Q histograms RHIC simulation (but similar for NICA with droplets) Droplets with average volume 5 fm 3 All hadrons are produced by droplets Small signal also with no droplets due to resonance decays With identified species problems with small multiplicity droplets no droplets

8/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Different sizes of droplets and droplet abundance The peak at Q = 0 is visible … down to average droplet size of 2.5 fm 3 … also if not all hadrons come from the droplets

9/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test The effect of momentum conservation Toy model simulation: N subsystems – momentum is exactly 0 within each subsystem This leads to a dip in the Q histogram at small Q This generates a histogram which looks as if the events were correlated with each other NB: other effects which may influence the KS test: string fragmentation (weaker than droplets) jets (high p t ) quantum correlations (how to simulate them) stable with resonance decays y cut

10/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Summary The Kolmogorov-Smirnov test can be used to compare rapidity distributions event-by-event in order to identify non-statistical differences between the events Try KS test – if it gives no effect, then all events are the same and we have one piece of bulk matter (null hypothesis) Advantage of the KS test is no bias on any moment of the rapidity distribution. Fireball fragmentation would lead to a clear signal with this technique Other effects on the KS test to be examined

Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Backup: exact formulas for Q