Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.

Slides:



Advertisements
Similar presentations
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Advertisements

Anisotropy and Dzyaloshinsky- Moriya Interaction in V15 Manabu Machida, Seiji Miyashita, and Toshiaki Iitaka IIS, U. Tokyo Dept. of Physics, U. Tokyo RIKEN.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Nonlinear Optics Lab. Hanyang Univ. Chapter 8. Semiclassical Radiation Theory 8.1 Introduction Semiclassical theory of light-matter interaction (Ch. 6-7)
. Absorption of microwaves  Max ~ 5 s -1 W. Wernsdorfer et al, EPL (2003)
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Dilute anisotropic dipolar systems as random field Ising ferromagnets In collaboration with: Philip Stamp Nicolas Laflorencie Moshe Schechter University.
 From a single molecule to an ensemble of molecules at T ~0 : Both tunneling rate and decoherence increase  LZ probability: P LZ = 1 – exp[-  (  /ħ)
Initial goal: 70’s: Search for « macroscopic » quantum tunneling in magnetism Measurements on « narrow domain walls », ensemble of nanoparticles… Outline.
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
PCE STAMP Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics QUANTUM GLASSES Talk given at 99 th Stat Mech meeting, Rutgers, 10.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Numerical study on ESR of V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita June 27- July 1, 2005 Trieste, Italy.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Nuclear spin irreversible dynamics in crystals of magnetic molecules Alexander Burin Department of Chemistry, Tulane University.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
ESR Intensity and Anisotropy of Nanoscale Molecular Magnet V15 IIS, U. Tokyo, Manabu Machida RIKEN, Toshiaki Iitaka Dept. of Phys., Seiji Miyashita Fa3-4.
Coherence in Spontaneous Emission Creston Herold July 8, 2013 JQI Summer School (1 st annual!)
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Introduction to Single Molecular Magnet
Electron Spin Resonance Spectroscopy
Quantum Devices (or, How to Build Your Own Quantum Computer)
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Lecture 2 Magnetic Field: Classical Mechanics Magnetism: Landau levels Aharonov-Bohm effect Magneto-translations Josep Planelles.
Power Dissipation Bounds and Models for Quantum-dot Cellular Automata Circuits Saket Srivastava*, Sudeep Sarkar # and Sanjukta Bhanja* * Electrical Engineering,
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
● Problem addressed: Mn-doped GaAs is the leading material for spintronics applications. How does the ferromagnetism arise? ● Scanning Tunneling Microscopy.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Ch ; Lecture 26 – Quantum description of absorption.
Magnetization Process of Molecular Magnet in ultra-fast sweeping magnetic fields 1. Introduction to High Field Lab. in Okayama 2. Ultra-fast sweeping magnetic.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Quantum response in dissipative environments University of Tokyo S. Miyashita 5 Nov Linear Response 50 Equilibrium & NE response collaborators: Akira.
B. Barbara, R. Giraud, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi.
Magnetothermopower in high-mobility 2D electron gas: effect of microwave irradiation Oleg Raichev Department of Theoretical Physics Institute of Semiconductor.
Microscopic origin of the adiabatic change of the magnetization Hans De Raedt Applied Physics-Computational Physics, Materials Science Centre, University.
Single Molecular Magnets
Equation of State Michael Palmer. Equations of State Common ones we’ve heard of Ideal gas Barotropic Adiabatic Fully degenerate Focus on fully degenerate.
Förster Resonance Energy Transfer (FRET)
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
Photoinduced nano and micron structures K. Nasu Solid state theory division, Institute of materials structure science, High energy accelerator research.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Non-equilibrium Ward Identity
Single reservoir heat engine: controlling the spin
The University of Tokyo Seiji Miyashita
Magnetization dynamics in dipolar chromium BECs
Electronic polarization. Low frequency dynamic properties.
Coarsening dynamics Harry Cheung 2 Nov 2017.
Gauge structure and effective dynamics in semiconductor energy bands
Lecture 1: Semiclassical wave-packet dynamics and the Boltzmann equation Dimi Culcer UNSW.
Decoherence at optimal point: beyond the Bloch equations
Alternating Antisymmetric Interaction in Nanoscale Iron Ring
Magnetization processes in V15
Stephen Hill, Rachel Edwards Nuria Aliaga-Alcalde and George Christou
Persistent spin current
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Hole Spin Decoherence in Quantum Dots
Hiroyuki Nojiri, Department of Physics, Okayama University
Addition of Angular Momentum
Norm Moulton LPS 15 October, 1999
Information Storage and Spintronics 18
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de Raedt and Kristel Michielsen Univ. of Tokyo and Groningen Univ.

Nonadiabatic Transition Quantum Dynamics in Discrete Energy Levels Landau-Zener-Stueckelberg Mechanism C. Zener, Proc. R. Soc. (London) Ser. A137 (1932) 696. Adiabatic change, i.e. Resonant Tunneling Change in Sweeping Field SM, JPSJ 64(1995) 3207, 65(1996) 2734. H. De Raedt et al, PRB56 (1997) 2734

Control of Quantum State Adiabatic Transition Smooth Change of Magnetization I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) 3454. K. Saito & SM. JPSJ (2001) 3385.

DM interaction Extra-degeneracy + Dzyloshinskii-Moriya interaction S: odd (S=1/2) V15 Kramers doublet No tunneling? Extra-degeneracy + Dzyloshinskii-Moriya interaction SM, &. N. Nagaosa, . Theor. Phys. 106 (2001) 533

Energy structure with DM |3/2,3/2> |3/2,-1/2> |1/2,a> |1/2,b> No adiabatic change at H=0

Directionally Independent Energy Gap due to Hyperfine interaction SM, H.de Raedt and K. Michielsen: Prog. Thor. Phys.. 110 (2003) No.11

Change of state

Triangle system

M(t) from the ground state Apparent LZS relation

Finite temperature

M(t) under a sweeping field

Finite temperature

Apparent LZS transition

Effects of doubly degenerate structure Transition from 1/2 3/2

Hysteresis in field sweep

Hidden Conservation Law? Equilibrium process Adiabatic change SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533

Coherence at the crossing

Resonance on the AC field Non-trivial Resonance Y. Kayamuma, PRB 47 (1993) 9940 SM, K. Saito, H. De Daedt, Phys. Rev. Lett. 80 (1998) 1525.

Nontrivial resonance

Decoherence

Dissipation Effect Thernal Bath:Quantum Master equation I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) 3454. Random Noise: Quantum Schroedinger equation

Quantum Master Equation H0 HB HI e.g. Photon dissipation and pumping : (SM., H. Ezaki, and E. Hanamura PRA 57 (1998) 2046) Lindblad form  Stochastic Schrodinger Equation  (antibunching, squeezing photo emission)

General formulation Independent phonon bath K. Saito, S. Takesue and SM. Phys. Rev. B61 (2000) 2397 No feedback effects

Field sweeping with thermal bath Fast sweeping Slow sweeping Magnetic FoehnEffect LZS K. Saito & SM. JPSJ (2001) 3385.

Effects of environments

Phonon-bottleneck effect (MFE) Electron spin system + DM Hx sweeping No noise Symmetric Noise Nonsymmetric Noise

Effects on the Phonon-bottleneck effect (Magnetic Foehn effect) Hz:sweep

45-degree

Reaction to the nuclear spin

Temperature effect

Fe ring Fe3+ plays a role of a localized spin with S=5/2 and L=0. Fe10 n=6 n=10 n=18 n=12 Fe10 [NaFe6(OCH3)12 (dmb)6]+ : monoclinic 単斜晶系 a \ne b \ne c, alpha=gamma=90degree \ne beta [NaFe6(OCH3)12 (pmdbm)6]+ : trigonal  菱面体晶系 a=b=c, alpha=beta=gamma \le 120degree or \ne 90degree Fe10 : monoclinic Fe12 : monoclinic Fe18 : trigonal

2 1 Fe10 10 3 4 9 +Reflection 5 8 Mirror symmetry 6 7

A set of D vectors from static regular structure <yM|HDM|yM+1>=0 The DM interaction of the above D vectors is not the origin of the peaks in dM/dH.

Anisotropy of g-tensor Hg-tensor=SiSab mBgabiSibHa <yM|Hg-tensor|yM+1>=0 Anisotropy of single ion Hsingle-ion=SiSab DabiSibSia <yM|Hsingle-ion|yM+1>=0 Inversion symmetry should be broken.

Oscillation of methyl groups Structure is measured at Tst=226 K. Each ellipsoid shows 50% possibility. Oblong thermal ellipsoids with the longer radius a Elastic constant of an elastic energy of a methyl group is briefly estimated as K ~ 0.672 kBTst/a2. H. Nakano and SM: JPSJ 71 (2002) 2580

Thank you for your attention

Quantum Control of state: Non AdiabaticTransitions Non-monotonic magnetization process SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533

Quantum Switching Memory: 2-values+Metastability Quantum : Dynamics Classical:Hysteresis  Dissipation Nondiabatic change Memory Switch Adiabatic change No Hysteresis loss

1. Gap control Transverse field Nontrivial control Quantum interference Berry phase W.Wernsdorfer & R. Sessoli: Science 284 (1999) 133

2. Sweeping velocity control Switching between different S values

3.Rotation of the field (or sample) Rosen-Zener process

Effect of dissipation

Noise of uniform field does not contribute to the transition between Fluctuation of uniform field does not contribute to the transition between S=0 and S=1

Singlet-triplet transition Light emission Spin flip No emission

4. Anisotropy control Spin control in semiconductors by voltage