October 25, 2011 At the end of today, you will be able to: Use fundamental trigonometric identities. Warm-up: Match each trig function with its right triangle definition: Sine θ a) opposite/adjacent Cosine θ b) hypotenuse/opposite Tangent θ c) opposite/hypotenuse Cosecant θ d) adjacent/opposite Secant θ e) adjacent/hypotenuse Cotangent θ f) hypotenuse/adjacent HW: Complete Unit Circle and memorize. Find different strategies to help you remember on YouTube.com. QUIZ Thursday!
Correct HW 4.1 18a. 50b. 104a. 8π rad/min or 25.13 rad/min 18b. 54a. 330° 104b. 200 rad/min or 628.3 rad/min 48a. 54b. 408° 48b. 58. -0.842 50a. 84. 4/7 or 0.5714 radians
Filling out the Unit Circle
Filling out the Unit Circle
Memorize Common Radians!
Common Angles to Remember 30°-60°-90° and 45°-45°-90° Sides of the triangle are in the ratio:
Sines, Cosines, and Tangents of Special Angles Convert to radians then find the corresponding trig functions. (Also on Pg. 303) cos 30° cos 60° sin 30° sin 60° tan 30° tan 60° cos 45° sin 45° tan 45°
How this relates to the unit circle… Each point on the unit circle corresponds to the cosine and sine of the angle. The x-coordinate is the cosine. The y-coordinate is the sine. So each point on the unit circle is (cos , sin)
Hand Trick