2) Find one positive and one negative coterminal angle to

Slides:



Advertisements
Similar presentations
Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
Advertisements

Trigonometry/Precalculus ( R )
Trigonometric Functions on the
4-3: Trigonometric Functions of Any Angle What you’ll learn about ■ Trigonometric Functions of Any Angle ■ Trigonometric Functions of Real Numbers ■ Periodic.
4.2 Trigonometric Function: The Unit circle. The Unit Circle A circle with radius of 1 Equation x 2 + y 2 = 1.
13.2 – Define General Angles and Use Radian Measure.
7-5 The Other Trigonometric Functions Objective: To find values of the tangent, cotangent, secant, and cosecant functions and to sketch the functions’
TOP 10 Missed Mid-Unit Quiz Questions. Use the given function values and trigonometric identities to find the indicated trig functions. Cot and Cos 1.Csc.
Section 4.2 Trigonometric Functions: The Unit Circle
Sec 6.2 Trigonometry of Right Triangles Objectives: To define and use the six trigonometric functions as ratios of sides of right triangles. To review.
Section 7.5 Unit Circle Approach; Properties of the Trigonometric Functions.
Chapter 6 – Trigonometric Functions: Right Triangle Approach Trigonometric Functions of Angles.
Do Now: Graph the equation: X 2 + y 2 = 1 Draw and label the special right triangles What happens when the hypotenuse of each triangle equals 1?
_______º _______ rad _______º ________ rad ­­­­ _______º _______ rad _______º _______ rad ­­­­ _______º _______ rad ______º _______ rad Unit Circle use.
6.3.1 Trigonometric Functions of Real Numbers. Radians vs. Real Numbers The argument of a trig function can be a real number, radians, or degrees. Sin(2)
Trig/Precalculus Section 5.1 – 5.8 Pre-Test. For an angle in standard position, determine a coterminal angle that is between 0 o and 360 o. State the.
4.3 Trigonometry Extended: The Circular Functions
1.6 Trigonometric Functions: The Unit circle
Warm up Solve for the missing side length. Essential Question: How to right triangles relate to the unit circle? How can I use special triangles to find.
4.2 Trig Functions of Acute Angles. Trig Functions Adjacent Opposite Hypotenuse A B C Sine (θ) = sin = Cosine (θ ) = cos = Tangent (θ) = tan = Cosecant.
Trigonometry Section 4.2 Trigonometric Functions: The Unit Circle.
Math IV Warm Up Draw a circle on your paper. Fill in the degrees of the entire unit circle.
Section 4.4 Trigonometric Functions of Any Angle.
Trigonometric Functions of Any Angle  Evaluate trigonometric functions of any angle.  Find reference angles.  Evaluate trigonometric functions.
§5.3.  I can use the definitions of trigonometric functions of any angle.  I can use the signs of the trigonometric functions.  I can find the reference.
TRIGONOMETRIC FUNCTIONS OF ANY ANGLE
Right Triangle Trigonometry
Trigonometric Functions:Unit Circle
Lesson Objective: Evaluate trig functions.
Section 4.2 The Unit Circle.
Introduction to the Six Trigonometric Functions & the Unit Circle
Trigonometric Functions: The Unit Circle 4.2
Pre-Calc: 4.2: Trig functions: The unit circle
Evaluating Angles.
Warm Up Use trigonometric identities to simplify: csc ∙tan

4.2 Trigonometric Function: The Unit circle
1.4 Trigonometric Functions of Any Angle
Trigonometric Function: The Unit circle
4.3A Trigonometric Ratios
Objectives: Students will learn how to find Cos, Sin & Tan using the special right triangles.
Lesson 4.4 Trigonometric Functions of Any Angle
REVIEW for QUIZ Grade 12.
Trigonometric Functions of Acute Angles
LESSON ____ SECTION 4.2 The Unit Circle.
THE UNIT CIRCLE SECTION 4.2.
Warm – Up: 2/4 Convert from radians to degrees.
Trigonometric Function: The Unit circle
Trigonometric Functions: The Unit Circle (Section 4-2)
47.75⁰ Convert to radians: 230⁰.
Trigonometric Functions of Any Angle (Section 4-4)
Unit 7B Review.
4.2 Trigonometric Function: The Unit circle
Objectives Students will learn how to use special right triangles to find the radian and degrees.
Warm-up: Find the exact values of the other 5 trigonometric functions given sin= 3 2 with 0 <  < 90 CW: Right Triangle Trig.
Trigonometric Functions
4.4 Trig Functions of any Angle
Warm Up 30°±
Trigonometric Functions: The Unit Circle
Trigonometric Functions: Unit Circle Approach
Trig. Ratios in a Coordinate System
Evaluating Angles.
Trigonometric Functions: The Unit Circle 4.2
6.4 - Trig Ratios in the Coordinate Plane
Sec 6.2 Trigonometry of Right Triangles
Day 49 Agenda: DG minutes.
Academy Algebra II THE UNIT CIRCLE.
5-3 The Unit Circle.
The Circular Functions (The Unit Circle)
Given A unit circle with radius = 1, center point at (0,0)
Presentation transcript:

2) Find one positive and one negative coterminal angle to 𝜋 3 . Warm-up: 1) r = 9, θ = 230º 2) Find one positive and one negative coterminal angle to 𝜋 3 . Find arc length S. HW: Pg377- 8 (2 – 30 even, 33, 37, 39, 41, 45, 47, 51) Timed Five Minute Quiz on Unit Circle tomorrow!

a. I b.III a.III b. IV a. IV b. II a. IV b. III a. III b. II HW Answers: p367-368 (5 – 10 , 15 -18 , 25, 27, 33 – 36 , 43 – 61 odd, 71, 73) a. I b.III a.III b. IV a. IV b. II a. IV b. III a. III b. II 15) a. 25/12, -23/12 b. 8/3, -4/3 16) a. 19/6, -5/6 b. /6, -23/6 17) a. 7/4, - /4 b. 28/15, -32/15 18) a.26/9, -10/9 b. 98/45, -82/45 25) a. II b. IV 27) a. III b. I 33) a.405° , -315° b.324°, -396° 34) a.480°, -240 ° b. 330°, -30° 35) a. 660°, -60° b. 20°, -340° 36) a. 300°, -60° b. -130°, 590° 43) a. 270° b.210° 45) a. 420° b. -66°

HW Answers: p367-368 (5 – 10 , 15 -18 , 25, 27, 33 – 36 , 43 – 61 odd, 71, 73) 47) 2.007 49) -3.776 51) 9.285 53) -0.014 55) 25.714° 57) 337.5° 59) -756° 61) -114.592° 71) 6/5 rad 73) 32/7 rad

4.2 Trigonometric Functions: The Unit circle Objective: Evaluate trigonometric functions Use period to evaluate trigonometric functions Evaluate trigonometric functions with a calculator.

The Unit Circle with Radian Measures

Do you remember 30º, 60º, 90º special right triangles? long leg hypotenuse short leg Hypotenuse = double the short leg short leg = half the hypotenuse  

The Unit Circle with Radian Measures 1 2 , 3 2 1 30o   60o 1/2 Hypotenuse = double the short leg short leg = half the hypotenuse long leg = short leg times

The Unit Circle with Radian Measures − 1 2 , 3 2 1 2 , 3 2 − 3 2 , 1 2 3 2 , 1 2 30o 60o 1 𝟏 𝟐 𝟑 𝟐 − 3 2 , − 1 2 3 2 , − 1 2 − 1 2 ,− 3 2 1 2 ,− 3 2

Do you remember 45º, 45º, 90º isosceles right triangles?  

The Unit Circle with Radian Measures leg = hypotenuse times 45o 1   2 2 , 2 2

The Unit Circle: Radian Measures and Coordinates Trigonometric Functions: Let t be a real number and let (x, y) be the point on the unit circle corresponding to t sin t = y csc t = 1 𝑦 cos t = x sec t = 1 𝑥 tan t = 𝑦 𝑥 cot t = 𝑥 𝑦 (cos t, sin t)

Angles and the Unit Circle Find the exact values of cos (–150°) and sin (–150°). sin t = y csc t = 1 𝑦 cos t = x sec t = 1 𝑥 tan t = 𝑦 𝑥 cot t = 𝑥 𝑦 sin −150° =− 1 2 cos −150° =− 3 2

Find the six trig functions for 2𝜋 3 sin t = y csc t = 1 𝑦 cos t = x sec t = 1 𝑥 tan t = 𝑦 𝑥 cot t = 𝑥 𝑦 sin 2𝜋 3 = 3 2 cos 2𝜋 3 =− 1 2 tan 2𝜋 3 = csc 2𝜋 3 = sec 2𝜋 3 = cot 2𝜋 3 =

Example: Evaluate the six trigonometric functions of − 𝜋 4

Even and Odd Trig Functions: Even: cos(-t) = cost sec(-t) = sect Odd: sin(-t) = -sint tan(-t) = -tant csc(-t) = -csct cot(-t) = -cott

Using the Period to Evaluate Sine and Cosine:

Evaluating Trig Functions with a Calculator: 1) csc 𝜋 8 = 1 𝑠𝑖𝑛 𝜋 8 Mode: Radian 1  sin (   8 ENTER Display: 2.6131… 2) Sin 76.4 Mode: Degree Sin 7 6 . 4 ENTER Display: 0.0709…

Display: 0.0709… Evaluating Trig Functions with a Calculator: 2) cot 1.5 Mode: Radian 1  tan ( 1 . 5 ENTER Display: 0.0709…

Evaluate the six trigonometric functions of − 9𝜋 4 Sneedlegrit: Evaluate the six trigonometric functions of − 9𝜋 4 HW: Pg377- 8 (2 – 30 even, 33, 37, 39, 41, 45, 47, 51) Timed Five Minute Quiz on Unit Circle tomorrow!