Module #4.5, Topic #∞: Cardinality & Infinite Sets

Slides:



Advertisements
Similar presentations
Countability. The cardinality of the set A is equal to the cardinality of a set B if there exists a bijection from A to B cardinality? bijection? injection.
Advertisements

04/23/13 Countability Discrete Structures (CS 173) Derek Hoiem, University of Illinois 1.
1 Diagonalization Fact: Many books exist. Fact: Some books contain the titles of other books within them. Fact: Some books contain their own titles within.
EE1J2 - Slide 1 EE1J2 – Discrete Maths Lecture 10 Cardinality Uncountability of the real numbers.
EE1J2 – Discrete Maths Lecture 9
Introduction to Computability Theory
Great Theoretical Ideas in Computer Science.
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
2012: J Paul GibsonTSP: Mathematical FoundationsMAT7003/L5- CountingAndEnumeration.1 MAT 7003 : Mathematical Foundations (for Software Engineering) J Paul.
Great Theoretical Ideas in Computer Science.
Cantor’s Legacy: Infinity And Diagonalization Great Theoretical Ideas In Computer Science Steven RudichCS Spring 2004 Lecture 25Apr 13, 2004Carnegie.
Functions A B f( ) =. This Lecture We will define a function formally, and then in the next lecture we will use this concept in counting. We will also.
Functions.
2015 년 봄학기 강원대학교 컴퓨터과학전공 문양세 이산수학 (Discrete Mathematics) 수열과 합 (Sequences and Summations)
2.4 Sequences and Summations
1 Lecture 3 (part 3) Functions – Cardinality Reading: Epp Chp 7.6.
CSE 20: Discrete Mathematics for Computer Science Prof. Shachar Lovett.
1 1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 15-1 Mälardalen University 2012.
Copyright © Cengage Learning. All rights reserved. CHAPTER 7 FUNCTIONS.
강원대학교 컴퓨터과학전공 문양세 이산수학 (Discrete Mathematics) 수열과 합 (Sequences and Summations)
Mathematical Induction
Relations, Functions, and Countability
COMPSCI 102 Introduction to Discrete Mathematics.
Based on Rosen, Discrete Mathematics & Its Applications, 5e Prepared by (c) Michael P. Frank Modified by (c) Haluk Bingöl 1/18 Module.
INFIINITE SETS CSC 172 SPRING 2002 LECTURE 23. Cardinality and Counting The cardinality of a set is the number of elements in the set Two sets are equipotent.
Great Theoretical Ideas in Computer Science.
CSE 20 – Discrete Mathematics Dr. Cynthia Bailey Lee Dr. Shachar Lovett Peer Instruction in Discrete Mathematics by Cynthia Leeis licensed under a Creative.
2014 년 봄학기 강원대학교 컴퓨터과학전공 문양세 이산수학 (Discrete Mathematics) 수열과 합 (Sequences and Summations)
Lecture 4 Infinite Cardinals. Some Philosophy: What is “2”? Definition 1: 2 = 1+1. This actually needs the definition of “1” and the definition of the.
1 Melikyan/DM/Fall09 Discrete Mathematics Ch. 7 Functions Instructor: Hayk Melikyan Today we will review sections 7.3, 7.4 and 7.5.
Section 3.2: Sequences and Summations. Def: A sequence is a function from a subset of the set of integers (usually the set of natural numbers) to a set.
CS 285- Discrete Mathematics
CSE 311: Foundations of Computing Fall 2013 Lecture 26: Pattern matching, cardinality.
CSE 311: Foundations of Computing Fall 2014 Lecture 27: Cardinality.
To Infinity And Beyond! CS Lecture 11 The Ideal Computer: no bound on amount of memory Whenever you run out of memory, the computer contacts the.
Section 2.5. Cardinality Definition: A set that is either finite or has the same cardinality as the set of positive integers (Z + ) is called countable.
1 A Universal Turing Machine. 2 Turing Machines are “hardwired” they execute only one program A limitation of Turing Machines: Real Computers are re-programmable.
Sequences Lecture 11. L62 Sequences Sequences are a way of ordering lists of objects. Java arrays are a type of sequence of finite size. Usually, mathematical.
1-1 Copyright © 2013, 2005, 2001 Pearson Education, Inc. Section 2.4, Slide 1 Chapter 2 Sets and Functions.
Great Theoretical Ideas In Computer Science
Cardinality with Applications to Computability
Raymond Flood Gresham Professor of Geometry
The Acceptance Problem for TMs
Discrete Mathematics CS 2610
A Universal Turing Machine
This statement is false.
COT 3100, Spring 2001 Applications of Discrete Structures
Lecture12 The Halting Problem
2.4 Sequences and Summations
Counting Sets.
Cardinality of Sets Section 2.5.
Lecture 7 Functions.
Rosen 5th ed., §3.2 ~9 slides, ~½ lecture
Discrete Structures for Computer Science
Andreas Klappenecker [based on slides by Prof. Welch]
Copyright © Cengage Learning. All rights reserved.
Rosen 5th ed., §1.8 ~44 slides, ~2 lectures
Module #4.5, Topic #∞: Cardinality & Infinite Sets
Discrete Mathematics and its Applications
Lesson 5 Relations, mappings, countable and uncountable sets
Discrete Math for CS CMPSC 360 LECTURE 43 Last time: Variance
Rosen 5th ed., §3.2 ~9 slides, ~½ lecture
Formal Languages, Automata and Models of Computation
Dept. of Mathematics 이산수학 Discrete Mathematics Dr. Chae, Gab-Byung
Discrete Mathematics and its Applications
Functions Rosen 2.3, 2.5 f( ) = A B Lecture 5: Oct 1, 2.
Copyright © Cengage Learning. All rights reserved.
Cardinality Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted |A| = |B|, if and only if there is a one-to-one correspondence.
Great Theoretical Ideas in Computer Science
Copyright © Cengage Learning. All rights reserved.
Presentation transcript:

Module #4.5, Topic #∞: Cardinality & Infinite Sets Rosen 5th ed., last part of §3.2 ~10 slides, ½ lecture 2/25/2019 (c)2001-2003, Michael P. Frank

Infinite Cardinalities (from §3.2) Using what we learned about functions in §1.8, it’s possible to formally define cardinality for infinite sets. We show that infinite sets come in different sizes of infinite! This also gives us some interesting proof examples. 2/25/2019 (c)2001-2003, Michael P. Frank

Cardinality: Formal Definition For any two (possibly infinite) sets A and B, we say that A and B have the same cardinality (written |A|=|B|) iff there exists a bijection (bijective function) from A to B. When A and B are finite, it is easy to see that such a function exists iff A and B have the same number of elements nN. 2/25/2019 (c)2001-2003, Michael P. Frank

Countable versus Uncountable For any set S, if S is finite or if |S|=|N|, we say S is countable. Else, S is uncountable. Intuition behind “countable:” we can enumerate (generate in series) elements of S in such a way that any individual element of S will eventually be counted in the enumeration. Examples: N, Z. Uncountable: No series of elements of S (even an infinite series) can include all of S’s elements. Examples: R, R2, P(N) 2/25/2019 (c)2001-2003, Michael P. Frank

Countable Sets: Examples Theorem: The set Z is countable. Proof: Consider f:ZN where f(i)=2i for i0 and f(i) = 2i1 for i<0. Note f is bijective. Theorem: The set of all ordered pairs of natural numbers (n,m) is countable. Consider listing the pairs in order by their sum s=n+m, then by n. Every pair appears once in this series; the generating function is bijective. 2/25/2019 (c)2001-2003, Michael P. Frank

Uncountable Sets: Example Theorem: The open interval [0,1) : {rR| 0  r < 1} is uncountable. Proof by diagonalization: (Cantor, 1891) Assume there is a series {ri} = r1, r2, ... containing all elements r[0,1). Consider listing the elements of {ri} in decimal notation (although any base will do) in order of increasing index: ... (continued on next slide) Georg Cantor 1845-1918 2/25/2019 (c)2001-2003, Michael P. Frank

Uncountability of Reals, cont’d Discrete Mathematics and its Applications 2/25/2019 Uncountability of Reals, cont’d A postulated enumeration of the reals: r1 = 0.d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8… r2 = 0.d2,1 d2,2 d2,3 d2,4 d2,5 d2,6 d2,7 d2,8… r3 = 0.d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7 d3,8… r4 = 0.d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8… . . . Why? Because it’s first digit is different from the first digit of r1, its second digit is different from the second digit of r2, and in general its nth digit is different from the nth digit of rn. Therefore it is different from every number in the list. We may want to restrict ourselves to change the digit to one other than 9 because if we change it to a nine, the resulting number could be say .1239999999999… infinitely which is equal to .1240000000000… (which could be in the list) even though the digits don’t match. But, actually this imagined problem doesn’t actually arise because since there are an infinite number of reals that don’t include any 9’s, it is impossible for the diagonal to be all 9’s beyond some finite point. Now, consider a real number generated by taking all digits di,i that lie along the diagonal in this figure and replacing them with different digits. That real doesn't appear in the list! 2/25/2019 (c)2001-2003, Michael P. Frank (c)2001-2002, Michael P. Frank

Uncountability of Reals, fin. E.g., a postulated enumeration of the reals: r1 = 0.301948571… r2 = 0.103918481… r3 = 0.039194193… r4 = 0.918237461… OK, now let’s add 1 to each of the diagonal digits (mod 10), that is changing 9’s to 0. 0.4103… can’t be on the list anywhere! 2/25/2019 (c)2001-2003, Michael P. Frank

Discrete Mathematics and its Applications 2/25/2019 Transfinite Numbers The cardinalities of infinite sets are not natural numbers, but are special objects called transfinite cardinal numbers. The cardinality of the natural numbers, 0:|N|, is the first transfinite cardinal number. (There are none smaller.) The continuum hypothesis claims that |R|=1, the second transfinite cardinal. In other words, the continuum hypothesis has been shown to be independent from the other axioms of set theory that led to the definition of transfinite cardinals. Proven impossible to prove or disprove! 2/25/2019 (c)2001-2003, Michael P. Frank (c)2001-2002, Michael P. Frank

Do Uncountable Sets Really Exist? The set of objects that can be defined using finite-length strings of symbols (“descriptions”) is only countable. Therefore, any uncountable set must consist primarily of elements which individually have no finite description. Löwenheim-Skolem theorem: No consistent theory can ever force an interpretation involving uncountables. The “constructivist school” asserts that only objects constructible from finite descriptions exist. (e.g. R) Most mathematicians are happy to use uncountable sets anyway, because postulating their existence has not led to any demonstrated contradictions (so far). 2/25/2019 (c)2001-2003, Michael P. Frank

Countable vs. Uncountable You should: Know how to define “same cardinality” in the case of infinite sets. Know the definitions of countable and uncountable. Know how to prove (at least in easy cases) that sets are either countable or uncountable. 2/25/2019 (c)2001-2003, Michael P. Frank