Pade order investigation Re-run of functional forms

Slides:



Advertisements
Similar presentations
1 Chi-Square Test -- X 2 Test of Goodness of Fit.
Advertisements

BLM Trip Limits Revisited May 28, 2004 Peter Kasper.
C 3.7 Use the data in MEAP93.RAW to answer this question
Economics 20 - Prof. Anderson1 Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u 7. Specification and Data Problems.
FPP 10 kind of Regression 1. Plan of attack Introduce regression model Correctly interpret intercept and slope Prediction Pit falls to avoid 2.
A) 80 b) 53 c) 13 d) x 2 = : 10 = 3, x 3 = 309.
Compton Scattering James Durgin Physics 521 March 19, 2009.
1Prof. Dr. Rainer Stachuletz Multiple Regression Analysis y =  0 +  1 x 1 +  2 x  k x k + u 7. Specification and Data Problems.
CHAPTER 1 ECONOMETRICS x x x x x Econometrics Tools of: Economic theory Mathematics Statistical inference applied to Analysis of economic data.
Ali Hanks - group 7/20/09 1 Cluster splitting - all cluster pairs.
Multiple Regression Dr. Andy Field.
Quadratic Equations Algebra I. Vocabulary Solutions – Called roots, zeros or x intercepts. The point(s) where the parabola crosses the x axis. Minimum.
Nonlinear Regression Functions
5.1 Basic Estimation Techniques  The relationships we theoretically develop in the text can be estimated statistically using regression analysis,  Regression.
UNIT TRIANGLE AND RAFTER THEORY
Chapter 7 Statistical Issues in Research Planning and Evaluation.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Criteria to choose target foils for 1 st experiment Choose foils to test target thickness extrapolation vs. model => one Z maximizes number of points (we’ll.
 decimals/cc-7th-fracs-to-decimals/v/converting-fractions-to-decimals-example.
X- intercept: Let’s find the x- intercept of our new rational function q(x)! q(x) = 19x x In order to determine the x- intercept, set y =
Two-Sample Hypothesis Testing. Suppose you want to know if two populations have the same mean or, equivalently, if the difference between the population.
Discussion of time series and panel models
Regression Analysis Part C Confidence Intervals and Hypothesis Testing
Pendulum Mock Lab.
ScECAL BeamTest Analysis Asian ScECAL Meeting Jan 14 th, 2010 Adil, Satoru Uozumi, DongHee Kim.
Update on DVCS what can we do if 1 fb -1 ? S. Fazio EIC Task Force meeting BNL – May 2nd, 2013.
Graphical uncertainties
Flavour break-up July7th 2008 Our aim was modest: 1)To alter fc=0.15 to fc=0.09 following investigations of the charm fraction 2)To take into account the.
1 Presentation 20: UNIT TRIANGLE AND RAFTER THEORY.
Section Notes Physical science focuses on nonliving things.
Statistical and systematic uncertainties in a and A J. David Bowman SNS FPNB Magnet Meeting North Carolina State University Jan. 8, 2006.
1 Regression Review Population Vs. Sample Regression Line Residual and Standard Error of Regression Interpretation of intercept & slope T-test, F-test.
Chapter 9 Minitab Recipe Cards. Contingency tests Enter the data from Example 9.1 in C1, C2 and C3.
REGRESSION REVISITED. PATTERNS IN SCATTER PLOTS OR LINE GRAPHS Pattern Pattern Strength Strength Regression Line Regression Line Linear Linear y = mx.
4-1 MGMG 522 : Session #4 Choosing the Independent Variables and a Functional Form (Ch. 6 & 7)
R. Kass/Sp07P416/Lecture 71 More on Least Squares Fit (LSQF) In Lec 5, we discussed how we can fit our data points to a linear function (straight line)
1 Multiple Regression. 2 Model There are many explanatory variables or independent variables x 1, x 2,…,x p that are linear related to the response variable.
32931 Technology Research Methods Autumn 2017 Quantitative Research Component Topic 4: Bivariate Analysis (Contingency Analysis and Regression Analysis)
Comparison between Aasim and Calibob
How hypothesis testing works
Mott Polarimeter at CEBAF
Sources of Variation and Error in Wafer Fab Processing
C.Octavio Domínguez, Frank Zimmermann
Cases of F-test Problems with Examples
FLAME TEST The Results.
Rate vs. Thickness Jan 18, 2017.
Mathematica fits vs. Root
Summary of Ao extrapolation
Goodness of Fit Test - Chi-Squared Distribution
8.6.4 Comparing Linear and Nonlinear Functions
Fitting different functional forms
Monte Carlo Simulation of Neutrino Mass Measurements
قوانين برگزاري مناقصات و آيين نامه مالي و معاملاتي دانشگاه علوم پزشكي و خدمات بهداشتي ،درماني تهران
مديريت موثر جلسات Running a Meeting that Works
Chi-Square Goodness of Fit Test
Tutorial 1: Misspecification
Science of Psychology AP Psychology
The Scientific Method.
Looking at the 500 nm data point
Small group Mott meeting
Theoretical systematics Integrating efficiency fitting
½ of 6 = 3.
ZVertex histograms Add zVertex cuts to usual t spectrum cuts, and perform interference analysis to investigate symmetry in minbias data sample.
Warm Up Find the following: Vertex A.O.S. Y-intercept X-intercept.
Find the y-intercept and slope
Depression Era Unemployment Statistics Percentage of Labor Force
Graphing with Uncertainties
Scientific Method.
Running Chi-Square in Excel
Level 1 +3SD +2SD +1SD Mean -1SD -2SD -3SD Level 2.
Presentation transcript:

Pade order investigation Re-run of functional forms 11Jan2017 All data

Asymmetry vs. Thickness Run 2 2017

Pade(n,m) orders: Asy vs. Thick, Run2 2017 intercept dA R2 red. χ2 D.O.Free. Ftest (1,0) 43.8483 0.1592 .984 2.67 8 -- worst red. χ2 (2,0) 44.1228 0.1384 .993 1.24 7 10.22 (3,0) 44.353 .168 0.995 0.899 6 3.67 (rej F test) (0,1) 44.0815 0.1119 0.994 1.292 9.55 (0,2) 44.172 0.1421 0.9933 1.3081 0.9113 (rej F. Test) (1,1) 44.1837 0.1467 0.9932 1.5511 8.78 (1,2) 44.2671 0.5644 1.710 5 0.534 (rej F test) (2,1) 43.78 0.244 0.992 4.17 -1.918 (reject F test)

Pade(n,m) orders: Asy vs. Thick, Run1 2017 intercept dA R2 red. χ2 D.O.Free. Ftest (1,0) 43.8274 0.1370 0.987 2.50 8 n/a (2,0) 44.052 0.128 0.994 1.338 7 7.93 (3,0) 44.259 0.164 0.995 1.037 6 3.02 rej Ftest (0,1) 44.041 0.0999 0.9944 1.304 8.32 (0,2) 44.0921 0.1334 1.4429 0.327 rej Ftest (1,1) 44.0976 0.1364 0.998 1.7244 6.587 (1,2) 45.0844 23 1.82 5 0.74 rej Ftest (2,1) 43.78 0.211 3.82 -1.54 rej F Test

Pade orders, run 1: Asym vs. Rate Again, rate uncertainty extrapolated to asym uncertainty for fitting. Rate uncertainties much smaller percentage than thickness uncertainties

Pade(n,m) orders, run 1: A vs rate intercept dA R2 red. χ2 Ftest (1,0) 43.0651 0.308 0.974 33.01 -- Reject chi (2,0) 43.935 0.113 0.998 2.16 115 (3,0) 44.04 0.127 0.999 1.86 2.12 Reject F (1,1) 44.0747 0.1086 2.09 121 (2,1) 44.078 0.143 2.62 -0.004 (1,2) 44.0577 0.139 2.65 -0.058 (0,1) 43.56 0.196 0.99 11 15.194 (0,2) 44.0364 0.1037 1.82 29.69 (0,3) 43.939 0.119 2.92 -1.28 (2,2) 43.9554 0.3903 5.68 -2.15

Allowed Pade fits A vs. R, Run 1

Pade(n,m) orders, run 2: A vs rate intercept dA R2 red. χ2 Ftest (1,0) 42.884 0.3747 0.964 36.88 -- Reject chi (2,0) 43.9593 0.1866 0.996 4.266 62.158 (3,0) 44.159 0.1776 0.998 2.607 5.45 Reject F (1,1) 44.10746 0.1695 3.55 78.043 (2,1) 44.043 0.227 0.997 5.47 -0.756 (1,2) 44.2403 0.2462 4.18 0.2467 (0,1) 43.4299 0.2726 0.986 17.23 10.123 (0,2) 44.0951 0.1673 3.44 29.1323 (0,3) 43.9577 0.199 5.90 -1.51 (2,2) 43.9555 1.106 0.993 15.21 -2.56

Pade(n,m) orders, run 1: Rate vs. Thickness function dA DOF red. χ2 Ftest (1,0)* {0.164479 x} 0.0046 8 2.73 n/a Not reject (2,0) {0.111449 + 0.141093 x + 0.0000436137 x^2} 0.7601 7 0.895 17.39 (2,0)* {0.142228 x + 0.0000422168 x^2} 0.0056 0.898 17.31 (3,0) {0.151723 x - 6.89155*10^-6 x^2 + 4.70547*10^-8 x^3} 0.0088 6 0.711 1.81 Reject F (0,1) 15.6383/(1 - 0.000982543 x) 4.81 159 -6.86 (0,2) 11.7609/(1 - 0.00244356 x + 1.6083*10^-6 x^2) 2.86 68 10.267 Reject chi (1,1) (0.143629 x)/(1 - 0.000232145 x) 1.14 14.098 (1,2) (0.837584 + 1.0258 x)/(1 + 0.0470451 x - 0.0000460074 x^2) 1095 5 200 -3.97 (2,1) (0.748261 + 0.14042 x - 0.0000438248 x^2)/(1 - 0.000497014 x) 1.09 1.66 -0.548 Frederick James, Statistical methods in experimental physics 2nd ed.

Allowed orders, RvsT

Pade(n,m) orders, run 2: Rate vs. Thickness function dA DOF red. χ2 Ftest (1,0)* {0.153224 x} 0.0049 8 2.96 n/a Bad chi sq (2,0) {0.404822 + 0.125329 x + 0.0000501778 x^2} 0.723 7 22.26 0.81 (2,0)* {0.12945 x + 0.0000451039 x^2} 0.0054 0.845 21 Not reject (3,0) Reject F (0,1) (0,2) Reject chi (1,1)* (0.131145 x)/(1 - 0.000262462 x) 0.0042 1.027 18.04 (1,2) (2,1) Frederick James, Statistical methods in experimental physics 2nd ed.

Summary: Allowed Pade orders For Asy. vs. Thickness (1,0), (2,0), (0,1), (1,1) For Asy. vs. Rate (2,0), (1,1), (0,2) For Rate vs. Thickness (1,0),(2,0)*, (1,1)* (*=forced zero) Theory suggested fits: in red Italics: doesn’t look good, but should still be looked at

Redo the Pade order analysis using ao =0 for all orders

Rerun Rate vs. Thickness ao=0

Pade(n,m) orders, run 2: Rate vs. Thickness ao≡0 function dA DOF red. χ2 Ftest (1,0) {0.153224 x} 2.95 n/a Bad chi sq (2,0) {0.12945 x+0.0000451039 x2} 0.85 21.00 Not reject (3,0) {0.140387 x-0.0000114574 x2+5.41958*10-8 x3} 0.60 2.90 Reject F (0,1) Can’t do with ao==0 (0,2) Can’t do ao==0 Reject chi (1,1) (0.131145 x)/(1 - 0.000262462 x) 1.027 18.04 (1,2) (0.12799 x)/(1 - 0.000432713 x + 1.75908*10^-7 x^2) 1.894 -1.29 (2,1) (0.140125 x - 0.000103749 x^2)/(1 - 0.00081288 x) 1.04 0.94 Frederick James, Statistical methods in experimental physics 2nd ed.

ReRun Run 1 R vs. T ao≡0

Pade(n,m) orders, run 1: Rate vs. Thickness ao≡0 function dA DOF red. χ2 Ftest (1,0) {0.164479 x} 2.73 n/a Bad chi sq (2,0) {0.142228 x + 0.0000422168 x^2} 0.90 17.3 Not reject (3,0) {0.151723 x - 6.89155*10^-6 x^2 + 4.70547*10^-8 x^3} 0.71 1.84 Reject F (0,1) (0,2) Reject chi (1,1) (0.143629 x)/(1 - 0.000232145 x) 1.14 14.1 (1,2) (0.137354 x)/(1 - 0.000323352 x + 5.19059*10^-8 x^2) 1.73 -0.70 (2,1) (-30072.9 x + 3357.51 x^2)/(1 + 19759.6 x) 3.77 -2.48 Frederick James, Statistical methods in experimental physics 2nd ed.