Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.

Slides:



Advertisements
Similar presentations
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Advertisements

B. J. Kim, D. -W. Kim, S. H. Kim, J. H. Cho, H. J. Lee, D. Y. Park, S
X. I. Gu, P. E. Palacio-Mancheno, D. J. Leong, Y. A. Borisov, E
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis  E.W. Bradley, L.R.
Stepwise preconditioning enhances mesenchymal stem cell-based cartilage regeneration through epigenetic modification  S. Lin, W.Y.W. Lee, L. Xu, Y. Wang,
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
J. A. Waung, S. A. Maynard, S. Gopal, A. Gogakos, J. G. Logan, G. R
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
M. Siebelt, A. E. van der Windt, H. C. Groen, M. Sandker, J. H
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
Chondrocyte-Specific Loss of the Branched Actin Mediator ARP2/3 Results in Growth Plate Fusion and Proteoglycan Loss in Articular Cartilage  B.O. Diekman,
Next-generation Sequencing Identifies Articular Cartilage and Subchondral Bone Mirnas after ESWT on Early Osteoarthritis Knee  C.-J. Wang, J.-H. Cheng,
In vivo imaging of MMP-13 activity in the murine destabilised medial meniscus surgical model of osteoarthritis  N.H. Lim, E. Meinjohanns, M. Meldal, G.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in sheep and goats  C.B. Little, M.M. Smith, M.A.
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Y. H. Sniekers, G. J. V. M. van Osch, A. G. H. Ederveen, J. Inzunza, J
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
M. H. van den Bosch, A. B. Blom, V. Kram, A. Maeda, S. Sikka, Y
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect.
Osteoarthritis-like changes in the heterozygous sedc mouse associated with the HtrA1– Ddr2–Mmp-13 degradative pathway: a new model of osteoarthritis  D.W.
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Three-dimensional distribution of articular cartilage thickness in the elderly talus and calcaneus analyzing the subchondral bone plate density  K. Akiyama,
Cartilage-specific deletion of Alk5 gene results in a progressive osteoarthritis-like phenotype in mice  Q. Wang, Q.Y. Tan, W. Xu, H.B. Qi, D. Chen, S.
Progranulin plays a chondroprotective role in a surgically-induced osteoarthritis in mice through TNFR2 pathway  J. Wei, Y. Zhao, C. Liu  Osteoarthritis.
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation 
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Heterozygosity for an inactivating mutation in low-density lipoprotein-related receptor 6 (Lrp6) increases osteoarthritis severity in mice after ligament.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis  L. Habouri, F.E. El Mansouri, Y.
Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis 
Mice over-expressing salmon calcitonin have strongly attenuated osteoarthritic histopathological changes after destabilization of the medial meniscus 
Development of quantitative in vivo imaging of articular cartilage degradation in murine osteoarthritis  P. Das Neves Borges, M.M. Fowkes, P.E. Brennan,
Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Joint loading and proximal tibia subchondral trabecular bone microarchitecture differ with walking gait patterns in end-stage knee osteoarthritis  B.C.
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
R. J. U. Lories, M. D. , Ph. D. , J. Peeters, B. Sc. , K. Szlufcik, Ph
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
A novel in vivo murine model of cartilage regeneration
Subchondral Bone Plate Sclerosis during Late Osteoarthritis is Mediated by Loading- induced Decrease in Sclerostin Amount  X. Ma, H. Jia, W. Tong, Z. Yang,
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
Weight-bearing asymmetry and vertical activity differences in a rat model of post- traumatic knee osteoarthritis  C.B. Hamilton, M.A. Pest, V. Pitelka,
A. Sophocleous, A.E. Börjesson, D.M. Salter, S.H. Ralston 
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Upregulation of Atrogin-1/FBXO32 is not necessary for cartilage destruction in mouse models of osteoarthritis  H.-E. Kim, J. Rhee, S. Park, J. Yang, J.-S.
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
S. Chang, T. Yasui, S. Tanaka, T. Saito  Osteoarthritis and Cartilage 
Presentation transcript:

Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S. Taketomi, T. Matsumoto, J.R. Kim-Kaneyama, T. Omiya, Y. Hosaka, H. Inui, Y. Omata, R. Yamagami, D. Mori, F. Yano, U. Chung, S. Tanaka, T. Saito  Osteoarthritis and Cartilage  Volume 24, Issue 4, Pages 688-697 (April 2016) DOI: 10.1016/j.joca.2015.11.008 Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Comparison of mouse knee and ankle joints. (A) Anatomy of mouse ankle joint. Tibialis posterior tendon (TP, black arrows) and deltoid ligament (DL, green arrows) are shown in the medial side (left panel). Anterior talofibular ligament (ATFL, blue arrows), calcaneofibular ligament (CFL, green arrows), and peroneus longus/brevis tendons (PL/PB, black arrows) are shown in the lateral side (right panel). Scale bars, 1 mm. (B) Safranin O stainings of mouse ankle and knee joints. Inset boxes indicate the regions shown in the enlarged images below. T: tibiotalar joint, S: subtalar joint, M: medial compartment of knee joint, L: lateral compartment of knee joint. Scale bars, 200 μm. (C) Enlarged Safranin O stainings of articular cartilage of tibiotalar and knee joints in mouse and human. Scale bars, 40 μm for mouse, and 300 μm for human. (D) Thickness of articular cartilage and cancellous bone volume (BV/TV) of subchondral bone of the talus in the tibiotalar joint and the tibia in the medial knee joint of mouse and human. Thickness of articular cartilage was measured at 15 points in three sections. BV/TV was measured at six areas in three sections. Data are expressed as scatter plots, and as means (bars) ± 95% confidence interval (CI) (error bars). Osteoarthritis and Cartilage 2016 24, 688-697DOI: (10.1016/j.joca.2015.11.008) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Articular cartilage degradation of mouse ankle and knee joints with aging. (A). Safranin O stainings of ankle and knee joints of 25-month-old mice. Inset boxes indicate the regions shown in the enlarged images below. T: tibiotalar joint, S: subtalar joint, M: medial compartment of knee joint, L: lateral compartment of knee joint. Scale bars, 200 μm and 50 μm for low and high magnification images, respectively. (B) OARSI score of two joints in the ankle and both compartments in the knee. Data are expressed as scatter plots for five mice. Data are expressed as means (bars) ± 95% confidence interval (CI) (error bars). Osteoarthritis and Cartilage 2016 24, 688-697DOI: (10.1016/j.joca.2015.11.008) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Medial ankle OA model. (A) Resection of TP (left panel) and DL (right panel). Red double lines indicate TP and DL, respectively. (B) Safranin O staining of the representative ankle joint in the medial OA model. Inset boxes indicate the regions shown in the enlarged images. T: tibiotalar joint, S: subtalar joint. Scale bars, 200 μm and 50 μm for low and high magnification images, respectively. (C) OARSI score of tibiotalar and subtalar joints in operated and sham limbs. Data are expressed as scatter plots for 12 mice. Data are expressed as means (bars) ± 95% CI (error bars). (D) Micro CT images of the medial side of ankle joints; before (left panel) and 8 weeks after surgery (right panel). Red arrow indicates a medial malleolar osteophyte. Osteoarthritis and Cartilage 2016 24, 688-697DOI: (10.1016/j.joca.2015.11.008) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Lateral ankle OA model. (A) Resection of ATFL (left) and CFL (right). Red double lines indicate ATFL and CFL, respectively. (B) Safranin O staining of the representative ankle joint in the lateral OA model. Inset boxes indicate the regions shown in the enlarged images. T: tibiotalar joint, S: subtalar joint. Scale bars, 200 μm and 50 μm for low and high magnification images, respectively. (C) OARSI score of tibiotalar and subtalar joints in operated and sham limbs. Data are expressed as scatter plots for 12 mice. Data are expressed as means (bars) ± 95% CI (error bars). (D) Micro CT images of the lateral side of ankle joints; before (left panel) and 8 weeks after surgery (right panel). Red arrows indicate lateral malleolar osteophytes. Osteoarthritis and Cartilage 2016 24, 688-697DOI: (10.1016/j.joca.2015.11.008) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Bilateral ankle OA model. (A) Resection of PL/PB. Bilateral model was prepared by resection of TP, DL, ATFL, CFL, and PL/PB. (B) Safranin O staining of the representative ankle joint in the bilateral OA model. Inset boxes indicate the regions shown in the enlarged images. T: tibiotalar joint, S: subtalar joint. Scale bars, 200 μm and 50 μm for low and high magnification images, respectively. (C) OARSI score of tibiotalar and subtalar joints in operated and sham limbs. Data are expressed as scatter plots for 12 mice. Data are expressed as means (bars) ± 95% CI (error bars). (D) Micro CT images of the medial (left panel) and the lateral side (right panel) of the mouse ankle joint 8 weeks after surgery. Red arrows indicate medial and lateral malleolar osteophytes, respectively. Osteoarthritis and Cartilage 2016 24, 688-697DOI: (10.1016/j.joca.2015.11.008) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Sequential progression of the medial ankle OA model. Safranin O stainings, TUNEL stainings, and immunofluorescence of Adamts5 and Mmp13 in sequential sections of the medial model. Inset box indicates the regions shown in the enlarged images below. Scale bars, 200 μm and 100 μm for low and high magnification images, respectively. Osteoarthritis and Cartilage 2016 24, 688-697DOI: (10.1016/j.joca.2015.11.008) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions