Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.

Slides:



Advertisements
Similar presentations
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
Advertisements

A.C. Abraham, H.M. Pauly, T.L. Haut Donahue 
I. Haider, A. Speirs, A. Alnabelseya, P.E. Beaulé, H. Frei 
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
D.A. Houston, A.K. Amin, T.O. White, I.D.M. Smith, A.C. Hall 
2D and 3D MOCART scoring systems assessed by 9
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
On how degeneration influences load-bearing in the cartilage–bone system: a microstructural and micromechanical study  A. Thambyah, Ph.D., N. Broom, Ph.D. 
Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis  D. Bobinac, M. Marinovic, E.
Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis  F. Intema, T.P. Thomas,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Indentation diagnostics of cartilage degeneration
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
The groove model of osteoarthritis applied to the ovine fetlock joint
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
Initial application of EPIC-μCT to assess mouse articular cartilage morphology and composition: effects of aging and treadmill running  N. Kotwal, J.
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the horse  C.W. McIlwraith, D.D. Frisbie, C.E.
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture.
S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I
Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats  S. Adães,
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
3D histopathological grading of osteochondral tissue using contrast-enhanced micro- computed tomography  H.J. Nieminen, H.K. Gahunia, K.P.H. Pritzker,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Nonlinear optical microscopy of articular cartilage
On new bone formation in the pre-osteoarthritic joint
A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
The changing role of the superficial region in determining the dynamic compressive properties of articular cartilage during postnatal development  A.R.
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage  A.J. Griebel, S.B. Trippel, C.P. Neu  Osteoarthritis.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Ageing is associated with reduction of mechanically-induced activation of Smad2/3P signaling in articular cartilage  W. Madej, A. van Caam, E.N. Blaney.
Lead accumulation in tidemark of articular cartilage
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Presentation transcript:

Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F. van Sloun, M. Dickinson, N. Broom, A. Thambyah  Osteoarthritis and Cartilage  Volume 23, Issue 10, Pages 1755-1762 (October 2015) DOI: 10.1016/j.joca.2015.05.012 Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 (A) Macroscopic view of the osteochondral junction. The AC, zone of calcified cartilage (ZCC), and SB are clearly visible. (B) Three point bending rig submerged in a saline bath. The beams are loaded in the physiological loading direction with the calcified cartilage on the top. The supports are 12 mm apart, beams average 16 mm in length. (C) Microindentation of calcified cartilage and SB. Indentations (white arrows) were performed in the upper and lower ZCC and the upper and lower SB plate. Scale bar 100 μm. Osteoarthritis and Cartilage 2015 23, 1755-1762DOI: (10.1016/j.joca.2015.05.012) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Saf O and Fast Green stained sections showing progressive cartilage degeneration. OARSI scores A) 0, B) 1, C) 2, D) 3, E) 4, and F) 4.5. Staining intensity: A) no reduction, B) slight reduction in the surface layer, C) moderate reduction extending down to the mid zone, D&E) relatively extensive reduction into the deep zone, F) no staining except in the deep zone, with severe tissue loss. Scale bar 0.5 mm. Osteoarthritis and Cartilage 2015 23, 1755-1762DOI: (10.1016/j.joca.2015.05.012) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 DIC images of representative samples from the G0, G1, and G2 groups. A) Cartilage, calcified cartilage, and SB plate. Scale bar 1 mm. B) Magnified view of the calcified cartilage of the samples in A showing the trend of increasing duplicate tidemarks (*) with degeneration and bony spicules (arrows) visible in all samples. Scale bar 200 μm. Osteoarthritis and Cartilage 2015 23, 1755-1762DOI: (10.1016/j.joca.2015.05.012) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 (A) Calculated Young's Modulus4 using data from 3-point bend testing. The first series derives SB modulus (ESB) from SB only beams while the latter two series calculate ESB and calcified cartilage modulus (EZCC) from tests of composite ZCC on SB beams. Solid horizontal lines with asterisks indicate significant differences between sets of data: i.e., ESB from composite beams vs ESB from pure beams and vs EZCC. There were no significant differences between degenerative groups G0, G1, or G2. *P < 0.001(B) Young's Modulus calculated from microhardness testing33. Solid horizontal lines with asterisks indicate significant differences between regions tested. There were no significant differences between groups. **P = 0.03 (C) Plane strain elastic modulus calculated from nanoindentation testing. Solid horizontal lines with asterisks indicate significant differences between regions tested. Dashed lines indicate significant differences between groups. ***P = 0.001, †P = 0.038. Osteoarthritis and Cartilage 2015 23, 1755-1762DOI: (10.1016/j.joca.2015.05.012) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Comparison of moduli obtained from the three different testing methods, nano (nanoindentation), micro (microhardness indentation), and macro (3-point bending). Data used here is from the G0 (intact) group. Significant differences (*P = 0.028) between moduli measured across different scales are shown by the black horizontal lines for zone of calcified cartilage (ZCC) and grey for SB. Dashed lines indicate significant difference within scales between moduli of ZCC and SB. Osteoarthritis and Cartilage 2015 23, 1755-1762DOI: (10.1016/j.joca.2015.05.012) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions