Affinity and Specificity of Levamlodipine-Human Serum Albumin Interactions: Insights into Its Carrier Function  Zuojia Liu, Xiliang Zheng, Xiurong Yang,

Slides:



Advertisements
Similar presentations
Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Advertisements

Tryptophan-Lipid Interactions in Membrane Protein Folding Probed by Ultraviolet Resonance Raman and Fluorescence Spectroscopy Katheryn M. Sanchez, Guipeun.
Direct Measurements of the Mechanical Stability of Zinc-Thiolate Bonds in Rubredoxin by Single-Molecule Atomic Force Microscopy Peng Zheng, Hongbin Li.
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Reliable and Global Measurement of Fluorescence Resonance Energy Transfer Using Fluorescence Microscopes  Zongping Xia, Yuechueng Liu  Biophysical Journal 
A Dynamics Criterion to Determine Allostery
Wenjun Zheng, Han Wen, Gary J. Iacobucci, Gabriela K. Popescu 
Volume 83, Issue 4, Pages (October 2002)
Volume 112, Issue 12, Pages (June 2017)
Gil Rahamim, Dan Amir, Elisha Haas  Biophysical Journal 
Volume 95, Issue 11, Pages (December 2008)
Volume 113, Issue 12, Pages (December 2017)
The N-Terminal Actin-Binding Tandem Calponin-Homology (CH) Domain of Dystrophin Is in a Closed Conformation in Solution and When Bound to F-actin  Surinder M.
Volume 96, Issue 6, Pages (March 2009)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Michael J. Reddish, Robert Callender, R. Brian Dyer 
Volume 102, Issue 3, Pages (February 2012)
Volume 101, Issue 7, Pages (October 2011)
Volume 99, Issue 10, Pages (November 2010)
Volume 109, Issue 5, Pages (September 2015)
EPR Spectroscopy Targets Structural Changes in the E
Yuan Yang, Chang Shu, Pingwei Li, Tatyana I. Igumenova 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Dmitry A. Fedosov, Bruce Caswell, George Em Karniadakis 
Haden L. Scott, Justin M. Westerfield, Francisco N. Barrera 
Volume 108, Issue 7, Pages (April 2015)
Yusuke Nakasone, Kazunori Zikihara, Satoru Tokutomi, Masahide Terazima 
Vibrational Dynamics of Icosahedrally Symmetric Biomolecular Assemblies Compared with Predictions Based on Continuum Elasticity  Zheng Yang, Ivet Bahar,
Functional Role of Ribosomal Signatures
Volume 101, Issue 4, Pages (August 2011)
Volume 113, Issue 1, Pages (July 2017)
Protein-Protein Docking: From Interaction to Interactome
Ancestral Interactions of Ribosomal RNA and Ribosomal Proteins
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
Phase Behavior of DNA in the Presence of DNA-Binding Proteins
The Effect of Dye-Dye Interactions on the Spatial Resolution of Single-Molecule FRET Measurements in Nucleic Acids  Nicolas Di Fiori, Amit Meller  Biophysical.
Volume 111, Issue 1, Pages (July 2016)
Saswata Sankar Sarkar, Jayant B. Udgaonkar, Guruswamy Krishnamoorthy 
Mei Wang, Maggie Law, Jean Duhamel, P. Chen  Biophysical Journal 
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Volume 110, Issue 7, Pages (April 2016)
Volume 82, Issue 3, Pages (March 2002)
Fluorescence Fluctuation Spectroscopy of mCherry in Living Cells
Volume 97, Issue 8, Pages (October 2009)
Volume 110, Issue 9, Pages (May 2016)
Volume 104, Issue 2, Pages (January 2013)
Volume 106, Issue 5, Pages (March 2014)
Volume 80, Issue 6, Pages (June 2001)
Huan-Xiang Zhou, Osman Bilsel  Biophysical Journal 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Brownian Dynamics of Subunit Addition-Loss Kinetics and Thermodynamics in Linear Polymer Self-Assembly  Brian T. Castle, David J. Odde  Biophysical Journal 
Volume 98, Issue 10, Pages (May 2010)
Computed Pore Potentials of the Nicotinic Acetylcholine Receptor
Volume 25, Issue 9, Pages e3 (September 2017)
Volume 84, Issue 4, Pages (April 2003)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes  Yu-ming M. Huang, Wei Chen, Michael J.
The N-Terminal Actin-Binding Tandem Calponin-Homology (CH) Domain of Dystrophin Is in a Closed Conformation in Solution and When Bound to F-actin  Surinder M.
Volume 114, Issue 4, Pages (February 2018)
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Ricksen S. Winardhi, Qingnan Tang, Jin Chen, Mingxi Yao, Jie Yan 
Volume 99, Issue 1, Pages (July 2010)
Volume 114, Issue 6, Pages (March 2018)
Kinetic Folding Mechanism of Erythropoietin
Volume 98, Issue 7, Pages (April 2010)
Volume 96, Issue 3, Pages (February 2009)
Volume 83, Issue 4, Pages (October 2002)
Presentation transcript:

Affinity and Specificity of Levamlodipine-Human Serum Albumin Interactions: Insights into Its Carrier Function  Zuojia Liu, Xiliang Zheng, Xiurong Yang, Erkang Wang, Jin Wang  Biophysical Journal  Volume 96, Issue 10, Pages 3917-3925 (May 2009) DOI: 10.1016/j.bpj.2008.12.3965 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 Illustration of the equivalent concept of the conventional specificity to intrinsic specificity ratio (ISR) as well as the corresponding energy spectrum. (a) A specific ligand binding to different receptors, P1–Pn represent the different proteins with different binding sites. (b) Different binding modes of a specific ligand to a specific receptor, M1–Mn represent the different modes with different set of contact interactions. (c) Similar energy spectrum and the Gaussian distribution, δE represents the energy gap between the native or lowest energy state and the average binding energy state, and ΔE represents the energy variance of the nonnative states. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Chemical structure of levamlodipine. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 UV-vis absorption spectra of HSA in the presence of levamlodipine. Curve 1: [levamlodipine] = 1.0 × 10−5 M; curve 2: [HSA] = 1.0 × 10−5 M; and curve 3: levamlodipine-HSA complex, [levamlodipine] = [HSA] = 1.0 × 10−5 M. T = 298 K, pH = 7.4. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Fluorescence quenching spectrum of HSA in the presence of levamlodipine. Concentration of HSA was 2.0 × 10−5 M whereas the corresponding concentrations of levamlodipine were 0, 4, 12, 20, 24, 32, 40, 50, 60, 70, 80, and 90 × 10−6 M, respectively, as the arrow indicates. T = 298 K; λex = 290 nm; and λem = 340 nm. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Fluorescence emission spectra of levamlodipine in presence of HSA (a, b ▴) and of alone PBS (b ▵). [HSA] = 2.0 × 10−5 M; [PBS] = 0.1 M, pH 7.4; L/P (levamlodipine/HSA molar ratio) from 0.1 to 2.0; λex = 374 nm. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 Overlapping of the fluorescence emission spectrum of HSA (λex = 290 nm) (1) with UV absorption spectrum of levamlodipine (2). [levamlodipine] = 1.0 × 10−5 M, [HSA] = 1.0 × 10−5 M, pH = 7.4; T = 298 K. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 7 Stern-Volmer curves for quenching various concentrations of levamlodipine with HSA at 298 K and 309 K. [HSA] = 2.0 × 10−5 M; λex = 290 nm. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 8 Lineweaver-Burk curves for quenching levamlodipine with HSA at 298 K and 309 K. [HSA] = 2.0 × 10−5 M; λex = 290 nm. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 9 Binding modeling of levamlodipine to HSA in the entrance of site I. The displayed residues are within 6 Å around levamlodipine. The H-bonds are shown by broken line. Levamlodipine is shown as cylinder model (C, magenta; O, red; H, white; N, blue; and Cl, green). Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 10 Comparison of the predicted levamlodipine energy spectra at seven sites on HSA. Biophysical Journal 2009 96, 3917-3925DOI: (10.1016/j.bpj.2008.12.3965) Copyright © 2009 Biophysical Society Terms and Conditions