Understanding Water Potential

Slides:



Advertisements
Similar presentations
Tendency of water to favor one side more than another. Water moves from an area of high potential to low potential. Predicts which way water diffuses.
Advertisements

Water Potential Osmosis & Plant cells. Plants & water potential  Plants can use the potential energy in water to perform work.  Tomato plant regains.
Water potential Ψ = Ψs+ Ψp
Water moves from a region of HIGHER WATER POTENTIAL to a region of LOWER WATER POTENTIAL
Water Potential Ψ = Ψp + Ψs Water Potential Video.
Click. Water potential Water potential is a concept that helps to describe the tendency of water to move from one area to another, particularly into or.
AP Biology Lab: Diffusion & Osmosis.
Calculating water potential Ψ = Ψp + Ψs. The combined effects of these two factors: 1.Solute concentration 2.Pressure are incorporated into a single measurement.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Diffusion of Water (Osmosis) To survive, plants must balance water uptake.
Click. Water potential Water potential is a concept that helps to describe the tendency of water to move from one area to another, particularly into or.
Water Potential. Water potential  (psi)  (psi) Tendency of a solution to take up water Tendency of a solution to take up water Water to diffuse from.
Click. Water potential Water potential is a concept that helps to describe the tendency of water to move from one area to another, particularly into or.
Water Potential Ψ = Ψp + Ψs Water Potential Video.
Calculating water potential
Water Potential. Cells and Their Environment Cells need to be able to move materials through membranes and throughout the cytoplasm to maintain homeostasis.
Membrane transport Review.
Water Potential. What you need to know! The role of diffusion (osmosis), active transport, and bulk flow in the movement of water and nutrients in plants.
Water Potential  The free energy per mole of water  Calculated from two components: Solute potential (osmotic pressure) Pressure potential (turgor pressure)
Water Potential Osmosis. Water potential  The combined effects of 1.) solute concentration 1.) solute concentration 2.) physical pressure (cell wall)
Membrane Structure and Function. What You Must Know: Why membranes are selectively permeable. The role of phospholipids, proteins, and carbohydrates in.
Understanding Water Potential. Water Potential Water potential predicts which way water diffuses through plant tissues and is abbreviated by the Greek.
Click. Water potential Water potential is a concept that helps to describe the tendency of water to move from one area to another, particularly into or.
Water Potential Notes Osmotic issues in plants cells.
Water Potential Chapters: 36.1 Cellular Biology. What you need to know! The role of diffusion (osmosis), active transport, and bulk flow in the movement.
Click. Water potential Water potential is a concept that helps to describe the tendency of water to move from one area to another, particularly into or.
Warm up: October 28 Identify the organelle that:
What is Water Potential?
Water Potential Osmosis & Plant cells.
Marking Period 2 Grades Finish grading ecology projects Chapter 6 Quiz
Water Potential.
Cell Transport AP Biology ch 7.
Water Potential Osmosis & Plant cells.
Osmosis and Plant Cells
Water Potential.
Water Potential Osmosis & Plant cells.
Water Potential Click.
Water Potential Click.
Understanding Water Potential
Water Potential Made Simple
Water Potential.
Water Potential.
Colligative Properties: Osmotic Pressure (6.10)
Diffusion of Water (Osmosis)
Water Potential Problems
Understanding Water Potential
Understanding Water Potential
Water Potential Learning Targets
Water Potential Problems
Water Potential Problems
Water Potential Click.
Calculating water potential
Calculating water potential
Lab 5 An Investigation of Osmosis in Living Cells and Tissues
What is Water Potential?
Water Potential.
Warm up: October 25 Identify the organelle that:
Water Potential Problems
Water Potential Problems
What is Water Potential?
Understanding Water Potential
Water Potential Click.
Water Potential Osmosis & Plant cells.
Water Potential Osmosis & Plant cells.
Water Potential Click.
Water Potential.
Water Potential Problems
Water Potential.
Water Potential Click.
What is Water Potential?
Presentation transcript:

Understanding Water Potential

Water potential equation: Water potential (ψ): H2O moves from high ψ  low ψ potential Water potential equation: ψ = ψS + ψP Water potential (ψ) = free energy of water Solute potential (ψS) = solute concentration (osmotic potential) Pressure potential (ψP) = physical pressure on solution; turgor pressure (plants) Pure water: ψP = 0 MPa Plant cells: ψP = 1 MPa

Calculating Solute Potential (ψS) ψS = -iCRT i = ionization constant (# particles made in water) C = molar concentration R = pressure constant (0.0831 liter bars/mole-K) T = temperature in K (273 + °C) The addition of solute to water lowers the solute potential (more negative) and therefore decreases the water potential.

Where will WATER move? From an area of: higher ψ  lower ψ (more negative ψ) low solute conc.  high solute conc. high pressure  low pressure

Which chamber has a lower water potential? Which chamber has a lower solute potential? In which direction will osmosis occur? If one chamber has a Ψ of -2000 kPa, and the other -1000 kPa, which is the chamber that has the higher Ψ?

Sample Problem Calculate the solute potential of a 0.1M NaCl solution at 25°C. If the concentration of NaCl inside the plant cell is 0.15M, which way will the water diffuse if the cell is placed in the 0.1M NaCl solution?