Integration
A2 Integration II Starter: KUS objectives BAT use integration by parts with trig functions including βcyclicβ problems Starter:
WB 7a find the following integrals a) π₯ cos π₯ ππ₯ b) 2π₯ sin 3π₯ ππ₯ π’=π₯ ππ£ ππ₯ = cos π₯ π’ ππ£ ππ₯ = π’π£ β π£ ππ’ ππ₯ π£= sin π₯ π₯ cos π₯ ππ₯ ππ’ ππ₯ =1 =π₯ sin π₯ β sin π₯ 1 ππ₯ =π₯ sin π₯ + cos π₯ +πΆ
WB 7b find the following integrals a) π ππ¨π¬ π π π b) ππ π¬π’π§ ππ π π π’=2π₯ ππ£ ππ₯ = π ππ 3π₯ π’ ππ£ ππ₯ = π’π£ β π£ ππ’ ππ₯ π£=β 1 3 cos 3π₯ = 2 3 π₯ cos π₯ β β 2 3 cos 3π₯ ππ₯ ππ’ ππ₯ =2 = 2 3 π₯ cos π₯ + 2 9 sin 3π₯ +πΆ
WB 8 Show that 0 π/2 4π₯ sin 4π₯ ππ₯ =β 1 8 π π’=4π₯ π£=β 1 4 cos 4π₯ ππ’ ππ₯ =4 ππ£ ππ₯ = sin 4π₯ π’ ππ£ ππ₯ = π’π£ β π£ ππ’ ππ₯ =β π₯ cos 4π₯ β β cos 4π₯ ππ₯ = β 1 4 π₯ cos 4π₯ + 1 16 sin 4π₯ π/2 0 = β 1 4 Γ π 2 1 + β 0+0 =β 1 8 π QED
WB 9 Show that π/6 π/3 3π₯ cos 3π₯ ππ₯ =β 1 6 (2+π) π’=3π₯ π£= 1 3 sin 3π₯ ππ’ ππ₯ =3 ππ£ ππ₯ = cos 3π₯ π’ ππ£ ππ₯ = π’π£ β π£ ππ’ ππ₯ = π₯ sin 3π₯ β sin 3π₯ ππ₯ = π₯ sin 3π₯ + 1 3 πππ 3π₯ π/3 π/6 = π 3 0 + 1 3 β1 β π 6 1 + 1 3 0 =β 1 3 β π 6 =β 1 6 (2+π) QED
WB 10 Circular questions Find π π₯ cos π₯ ππ₯ π’ ππ£ ππ₯ = π’π£ β π£ ππ’ ππ₯ WB 10 Circular questions Find π π₯ cos π₯ ππ₯ π’= π π₯ π£= sin π₯ ππ’ ππ₯ = π π₯ ππ£ ππ₯ = cos π₯ Round 1 = π π₯ sin π₯ β π π₯ sin π₯ ππ₯ = π π₯ sin π₯ β β π π₯ cos π₯ β β π π₯ cos π₯ ππ₯ = π π₯ sin π₯ + π π₯ cos π₯ β π π₯ cos π₯ ππ₯ π’= π π₯ π£=β cos π₯ ππ’ ππ₯ = π π₯ ππ£ ππ₯ = sin π₯ Round 2 How is this circular? 2 π π₯ cos π₯ ππ₯ = π π₯ sin π₯ + π π₯ cos π₯ π π₯ cos π₯ ππ₯ = 1 2 π π₯ sin π₯ + cos π₯ +C
Skills 219 homework 219
One thing to improve is β KUS objectives BAT use integration by parts with trig functions including βcyclicβ problems self-assess One thing learned is β One thing to improve is β
END