Integration.

Slides:



Advertisements
Similar presentations
Inverse Trigonometric: Integration
Advertisements

Homework Questions.
Trig Functions Stations
Linear Geometry.
Circle geometry: Equations / problems
Integration By parts.
Trig Graphs And equations.
Reciprocal Trigonometric functions.
Trig addition formulae
Trig Ratios C 5 2 A M 4. If C = 20ΒΊ, then cos C is equal to:
Geometric Series.
Inequalities Quadratic.
Maclaurin and Taylor Series.
Some types of POLAR CURVES.
Domain and range.
Domain and range.
Indices-algebra.
Definite Integrals.
Starter: state the gradient and y intercept of each line
FLASH! Fredda Wyatt 01/2009.
Trigonometry Inverse functions
Second Derivative 6A.
Integration.
Starter: state the gradient and y intercept of each line
Differentiation Gradient problems.
Challenging problems Area between curves.
Integration 2a.
Radian Measure.

Complex numbers A2.
Increasing and decreasing
Simultaneous Equations substitution.

FM Series.
Modulus Function.
Double angle formulae.
Parametric equations Problem solving.
Quadratics graphs.
Methods in calculus.
Challenging problems Area between curves.
Complex numbers A2.
Simultaneous Equations.
Indices-algebra.
Methods in calculus.
Trig Equations.
FP2 Complex numbers 3c.
Trig Equations.
Methods in calculus.
Methods in calculus.
Functions Inverses.
Integration Volumes of revolution.
Integration Volumes of revolution.
Functions Inverses.
Further binomial Series expansion.
Integration Volumes of revolution.
Hyperbolic functions.
Integration Volumes of revolution.
Roots of polynomials.
Simultaneous Equations Indices.
Methods in calculus.
Methods in calculus.
Complex numbers nth roots.
Inequalities Linear.
Functions.
Roots of polynomials.
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
Determinant Of matrices.
Methods in calculus.
Hyperbolic functions.
Hyperbolic functions.
Presentation transcript:

Integration

A2 Integration II Starter: KUS objectives BAT use integration by parts with trig functions including β€˜cyclic’ problems Starter:

WB 7a find the following integrals a) π‘₯ cos π‘₯ 𝑑π‘₯ b) 2π‘₯ sin 3π‘₯ 𝑑π‘₯ 𝑒=π‘₯ 𝑑𝑣 𝑑π‘₯ = cos π‘₯ 𝑒 𝑑𝑣 𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣 𝑑𝑒 𝑑π‘₯ 𝑣= sin π‘₯ π‘₯ cos π‘₯ 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ =1 =π‘₯ sin π‘₯ βˆ’ sin π‘₯ 1 𝑑π‘₯ =π‘₯ sin π‘₯ + cos π‘₯ +𝐢

WB 7b find the following integrals a) 𝒙 𝐜𝐨𝐬 𝒙 𝒅𝒙 b) πŸπ’™ 𝐬𝐒𝐧 πŸ‘π’™ 𝒅𝒙 𝑒=2π‘₯ 𝑑𝑣 𝑑π‘₯ = 𝑠𝑖𝑛 3π‘₯ 𝑒 𝑑𝑣 𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣 𝑑𝑒 𝑑π‘₯ 𝑣=βˆ’ 1 3 cos 3π‘₯ = 2 3 π‘₯ cos π‘₯ βˆ’ βˆ’ 2 3 cos 3π‘₯ 𝑑π‘₯ 𝑑𝑒 𝑑π‘₯ =2 = 2 3 π‘₯ cos π‘₯ + 2 9 sin 3π‘₯ +𝐢

WB 8 Show that 0 πœ‹/2 4π‘₯ sin 4π‘₯ 𝑑π‘₯ =βˆ’ 1 8 πœ‹ 𝑒=4π‘₯ 𝑣=βˆ’ 1 4 cos 4π‘₯ 𝑑𝑒 𝑑π‘₯ =4 𝑑𝑣 𝑑π‘₯ = sin 4π‘₯ 𝑒 𝑑𝑣 𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣 𝑑𝑒 𝑑π‘₯ =βˆ’ π‘₯ cos 4π‘₯ βˆ’ βˆ’ cos 4π‘₯ 𝑑π‘₯ = βˆ’ 1 4 π‘₯ cos 4π‘₯ + 1 16 sin 4π‘₯ πœ‹/2 0 = βˆ’ 1 4 Γ— πœ‹ 2 1 + βˆ’ 0+0 =βˆ’ 1 8 πœ‹ QED

WB 9 Show that πœ‹/6 πœ‹/3 3π‘₯ cos 3π‘₯ 𝑑π‘₯ =βˆ’ 1 6 (2+πœ‹) 𝑒=3π‘₯ 𝑣= 1 3 sin 3π‘₯ 𝑑𝑒 𝑑π‘₯ =3 𝑑𝑣 𝑑π‘₯ = cos 3π‘₯ 𝑒 𝑑𝑣 𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣 𝑑𝑒 𝑑π‘₯ = π‘₯ sin 3π‘₯ βˆ’ sin 3π‘₯ 𝑑π‘₯ = π‘₯ sin 3π‘₯ + 1 3 π‘π‘œπ‘  3π‘₯ πœ‹/3 πœ‹/6 = πœ‹ 3 0 + 1 3 βˆ’1 βˆ’ πœ‹ 6 1 + 1 3 0 =βˆ’ 1 3 βˆ’ πœ‹ 6 =βˆ’ 1 6 (2+πœ‹) QED

WB 10 Circular questions Find 𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ 𝑒 𝑑𝑣 𝑑π‘₯ = 𝑒𝑣 βˆ’ 𝑣 𝑑𝑒 𝑑π‘₯ WB 10 Circular questions Find 𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ 𝑒= 𝑒 π‘₯ 𝑣= sin π‘₯ 𝑑𝑒 𝑑π‘₯ = 𝑒 π‘₯ 𝑑𝑣 𝑑π‘₯ = cos π‘₯ Round 1 = 𝑒 π‘₯ sin π‘₯ βˆ’ 𝑒 π‘₯ sin π‘₯ 𝑑π‘₯ = 𝑒 π‘₯ sin π‘₯ βˆ’ βˆ’ 𝑒 π‘₯ cos π‘₯ βˆ’ βˆ’ 𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ = 𝑒 π‘₯ sin π‘₯ + 𝑒 π‘₯ cos π‘₯ βˆ’ 𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ 𝑒= 𝑒 π‘₯ 𝑣=βˆ’ cos π‘₯ 𝑑𝑒 𝑑π‘₯ = 𝑒 π‘₯ 𝑑𝑣 𝑑π‘₯ = sin π‘₯ Round 2 How is this circular? 2 𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ = 𝑒 π‘₯ sin π‘₯ + 𝑒 π‘₯ cos π‘₯ 𝑒 π‘₯ cos π‘₯ 𝑑π‘₯ = 1 2 𝑒 π‘₯ sin π‘₯ + cos π‘₯ +C

Skills 219 homework 219

One thing to improve is – KUS objectives BAT use integration by parts with trig functions including β€˜cyclic’ problems self-assess One thing learned is – One thing to improve is –

END