Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis  P Pastoureau,

Slides:



Advertisements
Similar presentations
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Advertisements

Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis  P Pastoureau,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Contrasting alterations of apposed and unapposed articular cartilage during joint contracture formation  Guy Trudel, MD, Ko Himori, MD, Hans K. Uhthoff,
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis  S.K. Boyd, Ph.D., R. Müller, Ph.D.,
The groove model of osteoarthritis applied to the ovine fetlock joint
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
Next-generation Sequencing Identifies Articular Cartilage and Subchondral Bone Mirnas after ESWT on Early Osteoarthritis Knee  C.-J. Wang, J.-H. Cheng,
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Y. H. Sniekers, G. J. V. M. van Osch, A. G. H. Ederveen, J. Inzunza, J
Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage.
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Alfons S. K. de Hooge, Ph. D. , Fons A. J. van de Loo, Ph. D
Angiogenesis in two animal models of osteoarthritis
Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA  J.L. Huebner, K.A. Johnson,
Cartilage damage pattern in relation to subchondral plate thickness in a collagenase- induced model of osteoarthritis  S.M. Botter, M.Sc., G.J.V.M. van.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Parathyroid hormone(1-34) exhibits more comprehensive effects than celecoxib in cartilage metabolism and maintaining subchondral bone micro-architecture.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Biomechanical, histologic and macroscopic assessment of articular cartilage in a sheep model of osteoarthritis  S.P. Oakley, M.N. Lassere, I. Portek,
Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis  E.A. Messent, Ph.D.,
Knee cartilage thickness measurements using MRI: a 4½-month longitudinal study in the meniscectomized guinea pig model of OA  R. Bolbos, M.Sc., H. Benoit-Cattin,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium.
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
P.C. Pastoureau, E.B. Hunziker, J.-P. Pelletier 
Cyclodextrin polysulphate protects articular cartilage in experimental lapine knee osteoarthritis  S. Groeneboer, M.Sc., P. Pastoureau, M.D., Ph.D., E.
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
D.McK Ciombor, Ph.D., R.K Aaron, M.D., S Wang, M.D., B Simon, Ph.D. 
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic.
G. G. Reinholz, J. S. Fitzsimmons, M. E. Casper, T. J. Ruesink, H. W
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis  P.I. Mapp, D.A.
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Early chondrocyte hypercellularity and apoptosis may be correlated with osteochondral junction change at osteoarthritis onset in Dunkin-Hartley strain.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Frictional properties of Hartley guinea pig knees with and without proteolytic disruption of the articular surfaces  E. Teeple, M.D., B.C. Fleming, Ph.D.,
Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography  N.J. Willett, T. Thote, M. Hart,
Pre-emptive, early, and delayed alendronate treatment in a rat model of knee osteoarthritis: effect on subchondral trabecular bone microarchitecture and.
Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury  E.C. Argentieri, D.R. Sturnick, M.J. DeSarno,
M. L. Roemhildt, B. D. Beynnon, A. E. Gauthier, M. Gardner-Morse, F
Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis 
I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J
Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site  L.A. Vonk, T.S. de Windt, A.H.M.
Presentation transcript:

Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis  P Pastoureau, Ph.D., S Leduc, M.Sc., A Chomel, B.Sc., F De Ceuninck, Ph.D.  Osteoarthritis and Cartilage  Volume 11, Issue 6, Pages 412-423 (June 2003) DOI: 10.1016/S1063-4584(03)00050-5

Fig. 1 Left operated proximal tibia of a meniscectomized guinea pig. Site of measurement of histomorphometric parameters: medial tibial plateau (arrow). Safranin O staining. OP, osteophyte; L, ligament; C, cyst; GP, growth plate (magnification: 10×). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 2 (A) Left operated tibial plateau of a meniscectomized guinea pig. Area of measurement of the CT (in μm): automatically generated between the two manually indicated points (1 and 2) at the margin of cartilage (C) and bone (B). Safranin O staining. OP, osteophyte (magnification: 20×). (B) Results of CT (mean ± s.e.m.) in SH and MNX animals, 1 and 3 months post-operation. Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 3 (A) Left operated tibial plateau of a SH and MNX guinea pig. Measurement of the FI; automatically calculated as follows: FI=(length of superficial margin of cartilage (l)/width of area of measurement (w))×100. Safranin O staining (magnification: 80×). (B) Results of FI (mean ± s.e.m.) in SH and MNX animals, 1 and 3 months post-operation (significant differences between SH and MNX: ∗∗P<0.01; ∗∗∗P<0.001; significant difference in SH between 1 and 3 months: # P<0.05). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 4 (A) Left operated tibial plateau of a SH and MNX guinea pig. Automatic measurement of the SOI in the deep (D) and superficial (S) zones of the articular cartilage after manual delimitation of the D from the S zones. Proteoglycan content ratio of the cartilage is expressed as SOI in S/SOI in D. Safranin O staining (magnification: 80×). (B) Results of proteoglycan content ratio (mean ± s.e.m.) in SH and MNX animals, 1 and 3 months post-operation (significant difference between SH and MNX: ∗∗∗P<0.001). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 5 (A) Left operated tibial plateau of a SH and MNX guinea pig. Measurement of the CD calculated as follows: number of cells (manual counting) divided by the automatically measurement of the central area of the medial tibial plateau (nb cells/mm2). Safranin O staining (magnification: 200×). (B) Results of CD (mean ± s.e.m.) in SH and MNX animals, 1 and 3 months post-operation (significant difference between SH and MNX: ∗∗∗P<0.001). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 6 (A) Left medial tibial plateau of a guinea pig. Bone volume (BV in %) and subchondral bone plate thickness (SBPT in μm) were automatically measured after segmentation of bone in the half superior part of the epiphysis (dark area). Goldner trichrome staining. L, ligament; GP, growth-plate; BE, bone epiphysis (magnification: 12.5×). (B) Results of BV and SBPT (mean ± s.e.m.) in SH and MNX animals, 1 and 3 months post-operation (significant differences between SH and MNX: ∗P<0.005; significant differences in SH between 1 and 3 months: #P<0.05). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 7 Pearson's (r) and Spearman's (r′) correlations between the CT and the subchondral bone plate thickness of the medial tibial plateau calculated at the two grouped time points for all the animals (∗∗P<0.01). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 8 Pearson's (r) and Spearman's (r′) correlations between the proteoglycan content ratio and the FI of the medial tibial plateau calculated at the two grouped time points for all the animals (∗∗P<0.01; ∗∗∗P<0.001). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 9 Pearson's (r) and Spearman's (r′) correlations between the CD and the FI of the medial tibial plateau calculated at the two grouped time points for all the animals (∗P<0.05; ∗∗∗P<0.001). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 10 Pearson's (r) and Spearman's (r′) correlations between the CD and the proteoglycan content ratio of the medial tibial plateau calculated at the two grouped time points for all the animals(∗∗P<0.01). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)

Fig. 11 Pearson's (r) and Spearman's (r′) correlations between the subchondral bone plate thickness and the bone volume of the medial tibial plateau calculated at the two grouped time points for all the animals (∗∗∗P<0.001; ∗P<0.05). Osteoarthritis and Cartilage 2003 11, 412-423DOI: (10.1016/S1063-4584(03)00050-5)