Krüppel Mediates the Selective Rebalancing of Ion Channel Expression

Slides:



Advertisements
Similar presentations
Coordinating Different Homeostatic Processes
Advertisements

Volume 14, Issue 4, Pages (February 2016)
Volume 92, Issue 6, Pages (December 2016)
Volume 35, Issue 2, Pages (October 2015)
Volume 61, Issue 4, Pages (February 2009)
Volume 11, Issue 2, Pages (August 2012)
Volume 27, Issue 22, Pages e5 (November 2017)
Volume 22, Issue 20, Pages (October 2012)
Daniel T. Babcock, Christian Landry, Michael J. Galko  Current Biology 
Tissue Repair through Cell Competition and Compensatory Cellular Hypertrophy in Postmitotic Epithelia  Yoichiro Tamori, Wu-Min Deng  Developmental Cell 
Jung Hwan Kim, Xin Wang, Rosemary Coolon, Bing Ye  Neuron 
Golgi Outposts Shape Dendrite Morphology by Functioning as Sites of Acentrosomal Microtubule Nucleation in Neurons  Kassandra M. Ori-McKenney, Lily Yeh.
Impulse Control: Temporal Dynamics in Gene Transcription
Thiazolidinediones Regulate Adipose Lineage Dynamics
Volume 57, Issue 2, Pages (January 2015)
Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila  Michael A. Crickmore, Leslie B. Vosshall 
Volume 96, Issue 4, Pages e5 (November 2017)
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance  Alexandra Neuhaus-Follini, Greg J.
Volume 53, Issue 4, Pages (February 2007)
Volume 68, Issue 5, Pages (December 2010)
Volume 48, Issue 5, Pages (December 2012)
Volume 21, Issue 4, Pages (October 2017)
Ascending SAG Neurons Control Sexual Receptivity of Drosophila Females
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
BTB/POZ-Zinc Finger Protein Abrupt Suppresses Dendritic Branching in a Neuronal Subtype-Specific and Dosage-Dependent Manner  Wenjun Li, Fay Wang, Laurent.
Unrestricted Synaptic Growth in spinster—a Late Endosomal Protein Implicated in TGF- β-Mediated Synaptic Growth Regulation  Sean T Sweeney, Graeme W Davis 
Disparate Postsynaptic Induction Mechanisms Ultimately Converge to Drive the Retrograde Enhancement of Presynaptic Efficacy  Pragya Goel, Xiling Li, Dion.
Meilin Wu, James E. Robinson, William J. Joiner  Current Biology 
Volume 83, Issue 3, Pages (August 2014)
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
Giovanni Marchetti, Gaia Tavosanis  Current Biology 
Dendrites of Distinct Classes of Drosophila Sensory Neurons Show Different Capacities for Homotypic Repulsion  Wesley B. Grueber, Bing Ye, Adrian W. Moore,
Mario R. Pagani, Kimihiko Oishi, Bruce D. Gelb, Yi Zhong  Cell 
Drosophila CRYPTOCHROME Is a Circadian Transcriptional Repressor
A Genetic Analysis of Synaptic Development
Volume 7, Issue 1, Pages (January 2008)
Volume 25, Issue 20, Pages (October 2015)
Volume 52, Issue 4, Pages (November 2006)
Volume 20, Issue 6, Pages (August 2017)
Volume 55, Issue 6, Pages (September 2007)
Volume 7, Issue 6, Pages (June 2008)
Volume 14, Issue 4, Pages (February 2004)
Whole-Genome Analysis of Muscle Founder Cells Implicates the Chromatin Regulator Sin3A in Muscle Identity  Krista C. Dobi, Marc S. Halfon, Mary K. Baylies 
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Control of Dendritic Field Formation in Drosophila
Volume 49, Issue 2, Pages (January 2006)
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
Coordinating Different Homeostatic Processes
A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling
SMN Is Required for Sensory-Motor Circuit Function in Drosophila
Transsynaptic Control of Presynaptic Ca2+ Influx Achieves Homeostatic Potentiation of Neurotransmitter Release  Martin Müller, Graeme W. Davis  Current.
Martin Müller, Edward C.G. Pym, Amy Tong, Graeme W. Davis  Neuron 
Volume 88, Issue 6, Pages (December 2015)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Maria S. Robles, Sean J. Humphrey, Matthias Mann  Cell Metabolism 
Arvind Kumar Shukla, Joshua Spurrier, Irina Kuzina, Edward Giniger 
Volume 17, Issue 3, Pages (October 2016)
Volume 24, Issue 7, Pages (March 2014)
Suzanne Paradis, Sean T Sweeney, Graeme W Davis  Neuron 
Control of Dendritic Field Formation in Drosophila
Volume 22, Issue 19, Pages (October 2012)
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Volume 98, Issue 3, Pages e5 (May 2018)
Rab3 Dynamically Controls Protein Composition at Active Zones
Giovanni Marchetti, Gaia Tavosanis  Current Biology 
Michael U. Shiloh, Paolo Manzanillo, Jeffery S. Cox 
α2δ-3 Is Required for Rapid Transsynaptic Homeostatic Signaling
Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae  Jiro Yoshino, Rei K. Morikawa, Eri Hasegawa,
Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons  Wesley B Grueber,
Presentation transcript:

Krüppel Mediates the Selective Rebalancing of Ion Channel Expression Jay Z. Parrish, Charles C. Kim, Lamont Tang, Sharon Bergquist, Tingting Wang, Joseph L. DeRisi, Lily Yeh Jan, Yuh Nung Jan, Graeme W. Davis  Neuron  Volume 82, Issue 3, Pages 537-544 (May 2014) DOI: 10.1016/j.neuron.2014.03.015 Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Identification of Kr as a Transcriptional Regulator of Ion Channel Gene Expression (A) Microarray analysis of isolated cells over development. Genes are organized by hierarchical clustering (vertical axis) and populations are ordered by developmental time after egg laying (AEL). Red wedges highlight clusters of developmentally regulated genes. (B) The mean microarray expression value for all genes associated with each BDGP in situ category is shown for each population. Bubble color reflects relative expression, and bubble size represents statistical significance. Categories and populations are hierarchically clustered, and categories are color coded using the tissue-specific scheme used by Tomancak et al. (2007). (C) A regulatory network model. Ion channel nodes are depicted as blue rectangles and transcription factors as red ellipses. (D–G) Ion channels (D and F) and a subset of the most statistically significant transcription factors (E and G) differentially regulated in Shal495 mutants (D and E) and motoneurons overexpressing Kr (F and G). Columns represent independent samples; fold changes shown are relative to the median expression for a given gene calculated across all depicted samples (D–G). Neuron 2014 82, 537-544DOI: (10.1016/j.neuron.2014.03.015) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 Postembryonic Induction of Kr Is Specific to Loss of Shal (A) Kr expression levels during larval development. (B) Kr immunostaining (magenta) in the embryonic (left) and larval (right) CNS. (C) Induction of Kr immunoreactivity in the Shal larval nervous system. (D) Kr transcript measured by qPCR performed on isolated VNC preparations. (E) Kr staining in ion channel mutants. (F and G) Acute induction of Kr immunostaining (magenta) after 24 hr of 4-AP feeding (F), with (G) quantification of Kr+ cells relative to baseline (no drug) (G). ∗p < 0.05 (D and E, ANOVA with Dunnett’s post hoc test; G, t test, 4-AP treated versus mock). Data are presented as mean ± SEM. Neuron 2014 82, 537-544DOI: (10.1016/j.neuron.2014.03.015) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 Kr Is Necessary and Sufficient for Compensatory Induction of Sh Expression (A) Representative traces for EPSP and mEPSP (inset) amplitudes in the absence (top) or presence (bottom) of PhTx for wild-type (black), neuronally expressed Shal-RNAi (red), and neuronal coexpression of Shal-RNAi with Kr-RNAi (blue). (B and C) Quantification of experiments in (A). Data are normalized to each genotypic background in the absence of PhTx. (D) Shal immunostaining (magenta) in isolation and colabeled with anti-HRP to label neuronal membrane (green, right). (E–H) mEPSP amplitudes (E and G) and quantal content with and without PhTx for the indicated genotypes (F and H). ∗p < 0.01 (t test). Data are presented as mean ± SEM. Neuron 2014 82, 537-544DOI: (10.1016/j.neuron.2014.03.015) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 Conserved Expression and Inducibility of Kr in the PNS (A) Kr is expressed embryonically in PNS-md neurons (Gal421-7 > UAS-mCD8-GFP) and class IV PNS neurons (ppk-GFP) and diminishes over larval development. (B) Kr immunostaining (magenta) in embryonic PNS (left), in third-instar larval PNS (middle), and in Shal495 PNS (right). Kr levels are 2.5-fold higher than controls in Shal495 PNS neurons (p = 0.0006, unpaired t test with Welch’s correction). Neurons (green) are labeled with anti-futsch antibodies (22C10); white arrows indicate Kr+ nuclei of neurons. (C) Channel expression in PNS-md neurons overexpressing Kr. Data are presented as mean ± SEM. Neuron 2014 82, 537-544DOI: (10.1016/j.neuron.2014.03.015) Copyright © 2014 Elsevier Inc. Terms and Conditions