Dataset: Time-depth-recorder (TDR) raw data 1. Date 2

Slides:



Advertisements
Similar presentations
IB Math Studies – Topic 6 Statistics.
Advertisements

Statistical Tests Karen H. Hagglund, M.S.
Basic Statistical Concepts
Regionalized Variables take on values according to spatial location. Given: Where: A “structural” coarse scale forcing or trend A random” Local spatial.
Analysis of Research Data
The Data Analysis Plan. The Overall Data Analysis Plan Purpose: To tell a story. To construct a coherent narrative that explains findings, argues against.
Social Science Research Design and Statistics, 2/e Alfred P. Rovai, Jason D. Baker, and Michael K. Ponton Factor Analysis PowerPoint Prepared by Alfred.
Answering Descriptive Questions in Multivariate Research When we are studying more than one variable, we are typically asking one (or more) of the following.
Week 12 Chapter 13 – Association between variables measured at the ordinal level & Chapter 14: Association Between Variables Measured at the Interval-Ratio.
Statistical Methods For Health Research. History Blaise Pascl: tossing ……probability William Gossett: standard error of mean “ how large the sample should.
The Tutorial of Principal Component Analysis, Hierarchical Clustering, and Multidimensional Scaling Wenshan Wang.
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
1 DATA DESCRIPTION. 2 Units l Unit: entity we are studying, subject if human being l Each unit/subject has certain parameters, e.g., a student (subject)
Descriptive Statistics and Graphing. The Normal Distribution If the frequency (or number) of data points is plotted on the Y-axis, a bell-shaped curve.
Research & Statistics Looking for Conclusions. Statistics Mathematics is used to organize, summarize, and interpret mathematical data 2 types of statistics.
Descriptive Statistics
Skewness & Kurtosis: Reference
PCB 3043L - General Ecology Data Analysis. OUTLINE Organizing an ecological study Basic sampling terminology Statistical analysis of data –Why use statistics?
Interpreting Principal Components Simon Mason International Research Institute for Climate Prediction The Earth Institute of Columbia University L i n.
11/23/2015Slide 1 Using a combination of tables and plots from SPSS plus spreadsheets from Excel, we will show the linkage between correlation and linear.
Project Presentation Template (May 6)  Make a 12 minute presentation of your results (14 students ~ 132 mins for the entire class) NOTE: send ppt by mid-night.
Marketing Research Aaker, Kumar, Day and Leone Tenth Edition Instructor’s Presentation Slides 1.
Data Analysis.
PCB 3043L - General Ecology Data Analysis.
Advanced Statistical Methods: Continuous Variables REVIEW Dr. Irina Tomescu-Dubrow.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall2(2)-1 Chapter 2: Displaying and Summarizing Data Part 2: Descriptive Statistics.
Data Analysis. Qualitative vs. Quantitative Data collection methods can be roughly divided into two groups. It is essential to understand the difference.
Multivariate statistical methods. Multivariate methods multivariate dataset – group of n objects, m variables (as a rule n>m, if possible). confirmation.
Educational Research Descriptive Statistics Chapter th edition Chapter th edition Gay and Airasian.
Chapter 14 EXPLORATORY FACTOR ANALYSIS. Exploratory Factor Analysis  Statistical technique for dealing with multiple variables  Many variables are reduced.
Central Tendency  Key Learnings: Statistics is a branch of mathematics that involves collecting, organizing, interpreting, and making predictions from.
Welcome to MM305 Unit 2 Seminar Dr. Bob Statistical Foundations for Quantitative Analysis.
STATS DAY First a few review questions. Which of the following correlation coefficients would a statistician know, at first glance, is a mistake? A. 0.0.
Chapter 11 Summarizing & Reporting Descriptive Data.
Lecture 2 Survey Data Analysis Principal Component Analysis Factor Analysis Exemplified by SPSS Taylan Mavruk.
Descriptive Statistics ( )
Chapter 12 Understanding Research Results: Description and Correlation
MATH-138 Elementary Statistics
Descriptive measures Capture the main 4 basic Ch.Ch. of the sample distribution: Central tendency Variability (variance) Skewness kurtosis.
Summary of Prev. Lecture
PCB 3043L - General Ecology Data Analysis.
Teaching Statistics in Psychology
Statistics.
Descriptive Statistics
Description of Data (Summary and Variability measures)
STATS DAY First a few review questions.
Summary Statistics 9/23/2018 Summary Statistics
Suppose the maximum number of hours of study among students in your sample is 6. If you used the equation to predict the test score of a student who studied.
Multivarite Analysis Goals
Theme 7 Correlation.
Project Assignment – Instructions
Interpreting Principal Components
Basic Statistical Terms
NURS 790: Methods for Research and Evidence Based Practice
Multivariate Analysis of Trace Elements from Coral Cores
Project Presentation Template
Stranding Patterns in Stenella spp.
Coral Species distribution and Benthic Cover type He’eia HI
Multivariate Analysis on Stenella Longirostris Pathology Reports in the Main Hawaiian Islands Haley Boyd.
Fish Communities Before and After a Bleaching Event
Ordination for Body Condition and Cause of Death in Adult Bonin Petrels (Pterodroma hypoleuca) Goal: 1) Develop Body Condition Index (BCI) to describe.
Unit XI: Data Analysis in nursing research
Multivariate Analysis of a Carbonate Chemistry Time-Series Study
Dariyus Z Kabraji MARS 6300 Project
PCA of Waimea Wave Climate
Honors Statistics Review Chapters 4 - 5
MBA 510 Lecture 2 Spring 2013 Dr. Tonya Balan 4/20/2019.
Global PaedSurg Research Training Fellowship
Descriptive and elementary statistics
Presentation transcript:

Quantifying Diving Data from Christmas Shearwaters (CHSH) Ilana Nimz: Mars 6300 Dataset: Time-depth-recorder (TDR) raw data 1. Date 2. Time of dive (H:M:S, recorded every second underwater) 3. Pressure (dBar, every second underwater) Collected from 8 CHSH over 33 tag-days

Objective: Quantify Diving of Christmas Shearwaters (CHSH) Hypothesis: CHSH are diving exclusively during daylight hours (civil twilight a.m. to civil twilight p.m.) Prediction: CHSH dive more frequently in the late afternoon and evening, prior to civil twilight Approach: Summarize dive profiles from TDR raw data Standardize time across 3 months of tagging (Jun-Aug) by dividing 24hrs into 4 time blocks 1) Twilight + 3.5 hrs, 2) Middle of Day, 3) Twilight -3.5 hrs, 4) Night Start by exploring correlations between depth measurements and dive frequency via ordination

Dataset Description Main_CHSHsummary.wk1 (main matrix) 125 samples & 5 variables Samples: Bird-Tag Day-Time Block (Twilight, Morning, Daytime, Evening) Variables: Dives per Hour: # dives/time-block hrs Maximum Depth: meters Average Maximum Depth: meters Median Maximum Depth: meters %CV Max Depth: meters Second_CHSHgroups.wk1 (Second matrix) Samples: Bird-Tag Day- Time Block Grouping Variables: Time: Morning 1, Daytime 2, Evening 3, Twilight 4 Bird: Bird # (1-8)

Dataset Processing Outliers: “No… outliers given cutoff of 2.0 SD from the grand mean” Empty samples: 500 cells in main matrix; % empty =   32 Samples discarded: All night samples were empty- 26 discarded Some morning samples empty- 12 discarded Data transformations / relativizations: -Attempted to normalize w/ log transform- skew and kurtosis reduced but not normal range for all variables, so Non-parametric route! - Using Median to describe non-parametric data: removed average depth column -Give variables the same weight General Relativization (will relativize during ordination) Describe your sample size: Sample total= 85: 19 Morning, 33 Mid-day, 33 Evening

Dataset Exploration Identifying correlations: Dives/hr and Depth metrics 0.60 0.43 0.60 Weaker correlation with dives/hr and Depth: Max, Med, CV Tau= 0.605, 0.4271, 0.604 0.70 0.60 Max depth & Median depth Strongest Positive Correlation Tau= 0.6951 0.36 Weakest correlation between Med max and CV Tau = 0.3567 *Data not normal, so used Kendall Tau correlation

Dataset Analysis Settings used in the analysis Distance: Rel Sorensen NMS_DiveMaxAvgMedCV_RelSor_999                                                   Ordination of plots    in metrics  space.         85 plots           4 metrics           The following options were selected: ANALYSIS OPTIONS          1. REL.SOREN. = Distance measure          2.          6 = Number of axes (max. = 6)          3.        250 = Maximum number of iterations          4.     RANDOM = Starting coordinates (random or from file)          5.          1 = Reduction in dimensionality at each cycle          6. NO PENALTY = Tie handling (Strategy 1 does not penalize                          ties with unequal ordination distance,                          while strategy 2 does penalize.)          7.       0.20 = Step length (rate of movement toward minimum stress)          8.   USE TIME = Random number seeds (use time vs. user-supplied)          9.         50 = Number of runs with real data         10.        999 = Number of runs with randomized data         11.         NO = Autopilot         12.   0.000010 = Stability criterion, standard deviations in stress                          over last 200 iterations. OUTPUT OPTIONS         14.        YES = Write distance matrix?         15.         NO = Write starting coordinates?         16.         NO = List stress, etc. for each iteration?         17.        YES = Plot stress vs. iteration?         18.        YES = Plot distance vs. dissimilarity?         19.        YES = Write final configuration?         20.  UNROTATED = Write varimax-rotated, principal axes, or unrotated scores for graph?         21.        YES = Write run log?         22.        YES = Write weighted-average scores for metrics ? ------------------------------------------------------------------------------       1500 = Seed for random number generator. Settings used in the analysis Distance: Rel Sorensen Randomizations: 999

Results Interpretation 1 significant axis 2.07 = final stress for 1-dimensional solution *Excellent! (lower stress with fewer “species”) Minimum stress real data > Minimum randomized stress p-value = 0.024  (23+1 / 999+1) STRESS IN RELATION TO DIMENSIONALITY (Number of Axes) -------------------------------------------------------------------- Stress in real data Stress in randomized data 50 run(s) Monte Carlo test, 999 runs ------------------------- ----------------------------------- Axes Minimum Mean Maximum Minimum Mean Maximum p 1 2.070 26.608 57.040 0.000 23.970 57.052 0.0240 2 1.145 1.442 1.683 0.000 1.975 40.936 0.2280 3 0.764 0.946 1.296 0.008 1.104 2.161 0.1840 4 0.706 0.834 1.089 0.012 1.030 2.065 0.1320 5 0.645 0.810 1.086 0.039 0.986 1.635 0.1020 6 0.651 0.825 1.166 0.055 0.955 2.308 0.0950 p = proportion of randomized runs with stress < or = observed stress i.e., p = (1 + no. permutations <= observed)/(1 + no. permutations) Conclusion: a 1-dimensional solution is recommended.

Results Interpretation Scree Plot Stress very low at 1st axis- real data High variability of Randomized stress In 1st axis Overlap: 23 times, randomized > real

Results Interpretation Coefficient of Determination (% of Variance): Coefficients of determination for the correlations between ordination distances and distances in the original n-dimensional space:             R Squared Axis   Increment   Cumulative  1       .998        .998 Extremely high amount of variance (99.8%) explained with 1 axis Report Orthogonality: N/A- only 1 axis

Results Interpretation Strongest correlation indicates Med Max is explaining axis- negative correlation with axis correl_DiveMaxMedCV Pearson and Kendall Correlations with Ordination Axes   N= 85 Axis:               1                               r    r-sq   tau    dives pe    .351   .123   .019 max dep     .082   .007  -.390 median m   -.402   .161  -.525 %CV         .768   .590   .328 Most significant correlation with axis: Median Depth Max & Median Max had strong negative influence CV weak positive influence on axis 1 Not much influence from dive frequency

Discussion – Method What do these results mean for the hypotheses / predictions you proposed ? -Accept hypothesis: CHSH dive exclusively during the day Need further analysis to test predictions, but NMS was good exploration of patterns prior to testing temporal frequency and depth with a grouping test -Max depth and Median Max depth strongest influences -Frequency of dives not as strong as depth measures in axis

Discussion – Next Steps What do you propose to do for your re-analysis? MRPP- test the prediction to identify when during daylight hours CHSH are diving more frequently What would be the next steps for this study? Look at time under water and time between dives Compare to other shearwater species