Marcelo Behar, Alexander Hoffmann  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Jingkui Wang, Marc Lefranc, Quentin Thommen  Biophysical Journal 
Advertisements

Motor Regulation Results in Distal Forces that Bend Partially Disintegrated Chlamydomonas Axonemes into Circular Arcs  V. Mukundan, P. Sartori, V.F. Geyer,
Low Frequency Entrainment of Oscillatory Bursts in Hair Cells
Volume 106, Issue 6, Pages (March 2014)
Volume 105, Issue 1, Pages (July 2013)
Dejun Lin, Alan Grossfield  Biophysical Journal 
Volume 107, Issue 1, Pages (July 2014)
Zhanghan Wu, Jianhua Xing  Biophysical Journal 
Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature
Xinran Lu, David K. Wood, John M. Higgins  Biophysical Journal 
Volume 100, Issue 3, Pages (February 2011)
Spatial Control of Biochemical Modification Cascades and Pathways
Oscillatory Flow Accelerates Autocrine Signaling due to Nonlinear Effect of Convection on Receptor-Related Actions  Marek Nebyla, Michal Přibyl, Igor.
Volume 113, Issue 12, Pages (December 2017)
The Origin of Short Transcriptional Pauses
Dynamic Response Diversity of NFAT Isoforms in Individual Living Cells
Bhaswar Ghosh, Uddipan Sarma, Victor Sourjik, Stefan Legewie 
Volume 96, Issue 5, Pages (March 2009)
A Theoretical Model of Slow Wave Regulation Using Voltage-Dependent Synthesis of Inositol 1,4,5-Trisphosphate  Mohammad S. Imtiaz, David W. Smith, Dirk.
Volume 104, Issue 5, Pages (March 2013)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Brendan K. Murphy, Kenneth D. Miller  Neuron 
Noise Induces Hopping between NF-κB Entrainment Modes
Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element  Zhang Cheng, Feng Liu, Xiao-Peng.
He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 
Volume 111, Issue 2, Pages (July 2016)
Nessy Tania, John Condeelis, Leah Edelstein-Keshet  Biophysical Journal 
Volume 101, Issue 2, Pages (July 2011)
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Detection of Cochlear Amplification and Its Activation
Gustav Persson, Per Thyberg, Jerker Widengren  Biophysical Journal 
Gerald Offer, K.W. Ranatunga  Biophysical Journal 
Volume 99, Issue 4, Pages (August 2010)
Independent Category and Spatial Encoding in Parietal Cortex
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Volume 101, Issue 4, Pages (August 2011)
Calmodulin Modulates Initiation but Not Termination of Spontaneous Ca2+ Sparks in Frog Skeletal Muscle  George G. Rodney, Martin F. Schneider  Biophysical.
Critical Timing without a Timer for Embryonic Development
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Alexander J. Sodt, Richard W. Pastor  Biophysical Journal 
Volume 106, Issue 1, Pages (January 2014)
Volume 109, Issue 1, Pages (July 2015)
Volume 99, Issue 8, Pages (October 2010)
Volume 105, Issue 1, Pages (July 2013)
Intracellular Encoding of Spatiotemporal Guidance Cues in a Self-Organizing Signaling System for Chemotaxis in Dictyostelium Cells  Tatsuo Shibata, Masatoshi.
Benjamin Pfeuty, Quentin Thommen, Marc Lefranc  Biophysical Journal 
Volume 97, Issue 9, Pages (November 2009)
Volume 110, Issue 1, Pages (January 2016)
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
On the Role of Acylation of Transmembrane Proteins
Hierarchical Cascades of Instability Govern the Mechanics of Coiled Coils: Helix Unfolding Precedes Coil Unzipping  Elham Hamed, Sinan Keten  Biophysical.
Andrew E. Blanchard, Chen Liao, Ting Lu  Biophysical Journal 
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Matthew J. Westacott, Nurin W.F. Ludin, Richard K.P. Benninger 
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Pawel Gniewek, Andrzej Kolinski  Biophysical Journal 
Volume 99, Issue 4, Pages (August 2010)
Volume 103, Issue 11, Pages (December 2012)
Félix Proulx-Giraldeau, Thomas J. Rademaker, Paul François 
Supratim Ray, John H.R. Maunsell  Neuron 
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Morten Gram Pedersen, Richard Bertram, Arthur Sherman 
Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1- POPC Discoidal Particles  Søren Roi Midtgaard, Martin Cramer Pedersen,
Prediction of Cell Alignment on Cyclically Strained Grooved Substrates
Ping Liu, Ioannis G. Kevrekidis, Stanislav Y. Shvartsman 
Kinetic Folding Mechanism of Erythropoietin
David Naranjo, Hua Wen, Paul Brehm  Biophysical Journal 
George D. Dickinson, Ian Parker  Biophysical Journal 
Presentation transcript:

Tunable Signal Processing through a Kinase Control Cycle: the IKK Signaling Node  Marcelo Behar, Alexander Hoffmann  Biophysical Journal  Volume 105, Issue 1, Pages 231-241 (July 2013) DOI: 10.1016/j.bpj.2013.05.013 Copyright © 2013 Biophysical Society Terms and Conditions

Figure 1 Operational regimes of the three-state cycle. (A) The input signal causes the kinase IKK to transition from a poised (IKK) to an active state (IKKa). Active IKK is then transformed into an inactive form (IKKi) from which the poised state is regenerated. (B) When stimulated with square steps of varying amplitude, the cycle can generate biphasic signals with well-defined early and late phases. (C) Maximum amplitude (fraction of IKK active) during the early and late phases (left and right, respectively) as a function of the normalized stimulus strength (k1′) and recycling rate (k3′) parameters. Regions corresponding to the weak activation (WA) limit, and the monotonic (M), semiadaptive (SA), and adaptive (A) regimes are indicated. (D) Typical time courses of IKK activation. Biophysical Journal 2013 105, 231-241DOI: (10.1016/j.bpj.2013.05.013) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 2 Amplitude dose response. (A) Dose response for the early (solid) and late (dashed) phases of IKK response for the monotonic, semiadaptive, and strongly adaptive cases (k3′ = 102, 1, 10−2, left to right). (Lower panels) Dose responses normalized to their maximum attained value to emphasize the shift of the EC50 toward lower stimulus concentrations. (B) EC50PEAK and EC50SS (solid and dashed, respectively) as a function of k3′. Biophysical Journal 2013 105, 231-241DOI: (10.1016/j.bpj.2013.05.013) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 3 Duration dose response. (A) The three-state cycle was stimulated with square pulses of various durations. The period of time for which the IKKa fraction remained over an arbitrary threshold was defined as response duration. (B) Initial lag (δti) as a function of k1′ for monotonic (cyan), semiadaptive (red), and strongly adaptive (yellow) regimes (k3′ = 102, 10−1, 10−2, respectively), and 5 and 50% thresholds. Regions with nonzero duration (I), amplitude-limited (II), and duration-limited (III) are indicated. (C) Termination delay (δtd) for the three regimes and various values of k1′ as a function of pulse duration. (D) Duration dose-response for 5 and 50% thresholds. (E) Typical time courses of IKKa in response to square pulses. (F) Cross-sections of the duration dose-response surfaces along the pulse duration axis. All times in transformed units. Biophysical Journal 2013 105, 231-241DOI: (10.1016/j.bpj.2013.05.013) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 4 Amplitude-duration transformation. (A) Maximum output amplitude versus input duration for a pulse of saturating amplitude. (B) Maximum output amplitude versus input pulse duration for monotonic, semiadaptive, and adaptive regimes (k3′ = 102, 10−1, 10−2) and various input amplitudes. (C) Duration of the response (5% threshold) as a function of the normalized stimulus strength (k1′) and recycling rate (k3′) parameters for a pulse of duration 0.7 (in transformed time units). (D) Response duration versus normalized input amplitude for the three regimes in panel B. All times in transformed units. Biophysical Journal 2013 105, 231-241DOI: (10.1016/j.bpj.2013.05.013) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 5 Response to repeated stimulation. (A) Cycle response to a train of square pulses of duration 5, separated by Δt = 19.9, 7.9, 3.15,1.25, and 0.5 (left to right). Responses shown for monotonic, semiadaptive, and strongly adaptive regimes (k3′ = 102, 10−0, 10−2, respectively). Values for 95% IKK recovery times are 2.3, 2.3, and 299, respectively. (B) Response of the strongly adaptive case in panel A over an extended period of time showing full recovery for low-frequency pulses. All times in transformed units. Biophysical Journal 2013 105, 231-241DOI: (10.1016/j.bpj.2013.05.013) Copyright © 2013 Biophysical Society Terms and Conditions

Figure 6 Information transfer in IKK-IkB-NFκB module. (A) A library of input functions defined by variations of five temporal and two amplitude parameters was used to stimulate the cycle. (B) The resulting time profiles of IKK activity were used as inputs to a model of NFκB regulation. (C) Input functions and the corresponding time courses of IKK and NFκB activity. (D) The information content metric for the input library (yellow) and the mutual information for IKK-Input, NFκB-IKK, and NFκB-Input (blue, green, and red, respectively), as a function of time at different levels of discretization (2, 4, and 8 bins corresponding to 1, 2, and 3 bits). (E) Average information content for the input (yellow) and mutual information for the early (t < 30′) and late (30′ < t < 360′) phases of the response at different discretization levels. Biophysical Journal 2013 105, 231-241DOI: (10.1016/j.bpj.2013.05.013) Copyright © 2013 Biophysical Society Terms and Conditions