Beamforming.

Slides:



Advertisements
Similar presentations
Angle of Arrival (AoA) Calen Carabajal EECS 823.
Advertisements

A Crash Course in Radio Astronomy and Interferometry: 2
Dirty RF Impact on Interference Alignment
Air Force Technical Applications Center 1 Subspace Based Three- Component Array Processing Gregory Wagner Nuclear Treaty Monitoring Geophysics Division.
White n t Wavelength (nm) R t = 400 nm, n = 1.515,  = 0.
Constructive and Destructive Interference Beam Forming and Beam Steering.
5/15/2015 Mobile Ad hoc Networks COE 499 Localization Tarek Sheltami KFUPM CCSE COE 1.
Linear Algebra and SVD (Some slides adapted from Octavia Camps)
7: MIMO I: Spatial Multiplexing and Channel Modeling Fundamentals of Wireless Communication, Tse&Viswanath 1 7. MIMO: Spatial Multiplexing and Channel.
Integrated Circuits Design for Applications in Communications Dr. Charles Surya Department of Electronic and Information Engineering DE636  6220
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
April 8 – April 9. Can two different objects occupy the exact same location at the exact same time? Of course not … but two waves can! When waves meet,
Radar Principles and Systems Part I
Sarah Middleton Supervised by: Anton van Wyk, Jacques Cilliers, Pascale Jardin and Florence Nadal 3 December 2010.
Prof.Dr. : Hamdy Al Mikati Comm. & Electronics Dep year 4th
For 3-G Systems Tara Larzelere EE 497A Semester Project.
Multiple Input Multiple Output
RITEC MEDARS MULTIPLE EMAT DRIVER AND RECEIVER SYSTEM Your Logo Here Drive Phased Arrays of EMATs at high powers.
ECE 8443 – Pattern Recognition ECE 8423 – Adaptive Signal Processing Objectives: Introduction SNR Gain Patterns Beam Steering Shading Resources: Wiki:
Electrical Noise Location System Drew Compston Richard Denney Josh Gordon.
Eigenstructure Methods for Noise Covariance Estimation Olawoye Oyeyele AICIP Group Presentation April 29th, 2003.
EFFECTS OF MUTUAL COUPLING AND DIRECTIVITY ON DOA ESTIMATION USING MUSIC LOPAMUDRA KUNDU & ZHE ZHANG.
SMART ANTENNA.
Doc.: IEEE /0493r1 Submission May 2010 Changsoon Choi, IHP microelectronicsSlide 1 Beamforming training for IEEE ad Date: Authors:
ECE 5233 Satellite Communications Prepared by: Dr. Ivica Kostanic Lecture 9: Satellite link design (Section 4.3) Spring 2014.
EE 6331, Spring, 2009 Advanced Telecommunication Zhu Han Department of Electrical and Computer Engineering Class 18 Apr. 2 rd, 2009.
BY Siyandiswa Juanitta Bangani Supervisor: Dr R.Van Zyl
Computational Time-reversal Imaging
1 Fraunhofer Diffraction: Circular aperture Wed. Nov. 27, 2002.
Smart antenna Smart antennas use an array of low gain antenna elements which are connected by a combining network. Smart antennas provide enhanced coverage.
Superposition Two particles cannot occupy the same space at the same time, two waves can When two waves interact, one is super imposed on the other The.
Term paper on Smart antenna system
Antenna Arrays and Automotive Applications
Smart Antennas Presented by :- Rajib Kumar Das.
Geology 6600/7600 Signal Analysis Last time: Linear Systems The Frequency Response or Transfer Function of a linear SISO system can be estimated as (Note.
Integrated Phased Array Systems in Silicon
ADAPTIVE SMART ANTENNA Prepared By: Shivangi Jhavar Guided By: Mr.Bharat Patil.
Theory of Scattering Lecture 3. Free Particle: Energy, In Cartesian and spherical Coordinates. Wave function: (plane waves in Cartesian system) (spherical.
Wireless Communication
Lecture Continuous Wave Radar
Presented by : PARAMANAND SHARMA Roll No. : 207EE104
Amplitude Modulation (AM)
Ultrasound Physics Image Formation ‘97.
A Physical Interpretation of Beamforming, BLAST and SVD Algorithms
Optimum Passive Beamforming in Relation to Active-Passive Data Fusion
SMART ANTENNA.
Amplitude Modulation Circuits
Antenna selection and RF processing for MIMO systems
(Road to discuss harmony)
TUTORIAL 3 BEAMFORMING 9/15/2018 LECTURES 1.
EE608 Adaptive Signal Processing Course Project Adaptive Beamforming For Mobile Communication Group: 1 Chirag Pujara ( ) Prakshep Mehta.
Presented by: Chen Shi 02/22/2018
Fitting Curve Models to Edges
SMART ANTENNAS Reham mahmoud Amira aboelnasr.
MIMO II: Physical Channel Modeling, Spatial Multiplexing
Instrument Considerations
SVD: Physical Interpretation and Applications
TRANSMITTERS AND RECEIVERS
Ch2: Adaline and Madaline
RadioTelescopes – a field guide
Parallelization of Sparse Coding & Dictionary Learning
Effective Noise Figure in Hybrid BF system
Two-beam interference:
Microphone array beamforming
Phased Array Radars Naval Weapons Systems.
MIMO (Multiple Input Multiple Output)
SMART ANTENNA.
MIMO I: Spatial Diversity
MIMO II: Physical Channel Modeling, Spatial Multiplexing
Chenhui Zheng/Communication Laboratory
Presentation transcript:

Beamforming

Tx1

Tx1 cos⁡(2𝜋𝑓𝑡)

Tx2 Tx1 cos⁡(2𝜋𝑓𝑡) 𝝀 𝟐

𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝅 Tx2 Tx1 cos⁡(2𝜋𝑓𝑡) Rx 𝝀 𝟐

Destructive superimposition Tx2 Tx1 cos 2𝜋𝑓𝑡 + cos 2𝜋𝑓𝑡+𝜋 =0 𝝀 𝟐 Zero signal

Rx 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + Tx2 𝝀 𝟐 Tx1

Constructive superimposition cos 2𝜋𝑓𝑡 + cos 2𝜋𝑓𝑡+0 =2cos⁡(2𝜋𝑓𝑡) Amplified signal (twice amplitude) Tx2 𝝀 𝟐 Tx1

Receiver at arbitrary location Rx 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓 Tx2 𝝀 𝟐 Tx1

Arbitrary location, what’s the path difference

Path difference Rx 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓 𝜃 Tx2 𝒅 Tx1

Path difference and phase difference Rx 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓 𝜙(𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)= 2𝜋 𝜆 ∗(𝑝𝑎𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) Path difference = 𝒅𝒄𝒐𝒔(𝜽) 𝜙= 2𝜋 𝜆 ∗𝒅𝒄𝒐𝒔(𝜽) 𝜃 Tx2 𝒅 Tx1 𝐑𝐱 𝜽 =𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+ 𝟐𝝅 𝝀 𝒅𝒄𝒐𝒔(𝜽)

(𝑑= 𝜆 2 ) Radiation pattern: Rx amplitude as a function of angle

Radiation pattern: Rx amplitude as a function of angle (𝑑=𝜆)

Radiation pattern: Rx amplitude as a function of angle (𝑑=2𝜆)

Radiation pattern: Rx amplitude as a function of angle (𝑑= 𝜆 2 ) Radiation pattern: Rx amplitude as a function of angle 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓

Radiation pattern: Rx amplitude as a function of angle (𝑑= 𝜆 2 ) Radiation pattern: Rx amplitude as a function of angle The initial phases can be controlled 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+ 𝝓 𝒊𝒏 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓

Radiation pattern: Rx amplitude as a function of angle (𝑑= 𝜆 2 ) Radiation pattern: Rx amplitude as a function of angle 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+ 𝝓 𝒊𝒏 + 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓 𝝓 𝒊𝒏 =0 𝝓 𝒊𝒏 =-x A non zero initial phase can change the radiation pattern 𝝓 𝒊𝒏 =0 𝝓 𝒊𝒏 =-x

Multiple antennas

. . . Rx 𝜃 𝒅 𝒅 Tx(N) Tx(N-1) Tx2 Tx1 2𝜋 𝑑𝑐𝑜𝑠(𝜃) 𝜆 𝑅𝑥= cos 2𝜋𝑓𝑡 …….. + cos 2𝜋𝑓𝑡+ 𝑁−2 ∗𝜙 + cos 2𝜋𝑓𝑡+ 𝑁−1 ∗𝜙

𝑅𝑥= cos 2𝜋𝑓𝑡 + cos 2𝜋𝑓𝑡+𝜙 +cos⁡(2𝜋𝑓𝑡+2𝜙) + …… 𝑅𝑥= cos 2𝜋𝑓𝑡 + cos 2𝜋𝑓𝑡+𝜙 +cos⁡(2𝜋𝑓𝑡+2𝜙) + …….. + cos 2𝜋𝑓𝑡+ 𝑁−2 ∗𝜙 + cos⁡(2𝜋𝑓𝑡+ 𝑁−1 ∗𝜙) cos 2𝜋𝑓𝑡 = 𝑒 𝑖2𝜋𝑓𝑡 + 𝑒 −𝑖2𝜋𝑓𝑡 2 =Re { e i2𝜋𝑓𝑡 } 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡+𝜙 + e i2𝜋𝑓𝑡+2𝜙 + …….. e i2𝜋𝑓𝑡+ 𝑁−1 𝜙 + e i2𝜋𝑓𝑡+ 𝑁−1 𝜙 } 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡 𝑒 𝑖𝜙 + e i2𝜋𝑓𝑡 𝑒 𝑖2𝜙 + …….. e i2𝜋𝑓𝑡 𝑒 𝑖 𝑁−2 𝜙 + e i2𝜋𝑓𝑡 𝑒 𝑖 𝑁−1 𝜙 } 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 1 + 𝑒 𝑖𝜙 + 𝑒 𝑖2𝜙 + …….. + 𝑒 𝑖 𝑁−2 𝜙 + 𝑒 𝑖 𝑁−1 𝜙 ) 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 1− 𝑒 𝑖𝑁𝜙 1 − 𝑒 𝑖𝜙 } 𝑹𝒙(𝜽)=𝑹𝒆{ 𝐞 𝐢𝟐𝝅𝒇𝒕 𝟏− 𝒆 𝒊𝑵 𝟐𝝅𝒅𝒄𝒐𝒔(𝜽) 𝝀 𝟏 − 𝒆 𝒊 𝟐𝝅𝒅𝒄𝒐𝒔(𝜽) 𝝀 }

(𝑑= 𝜆 2 ) Radiation pattern (𝑁=8) (𝑁=2) (𝑁=4)

Rotating the beam 𝑅𝑥= cos 2𝜋𝑓𝑡 + cos 2𝜋𝑓𝑡+𝜙 +cos⁡(2𝜋𝑓𝑡+2𝜙) + …….. + cos 2𝜋𝑓𝑡+ 𝑁−2 ∗𝜙 + cos⁡(2𝜋𝑓𝑡+ 𝑁−1 ∗𝜙) 𝑅𝑥= cos 2𝜋𝑓𝑡+ 𝜙 𝑖𝑛𝑜 + cos 2𝜋𝑓𝑡+𝜙+ 𝜙 𝑖𝑛1 +cos⁡(2𝜋𝑓𝑡+2𝜙+ 𝜙 𝑖𝑛2 ) + … + cos 2𝜋𝑓𝑡+ 𝑁−2 ∗𝜙+ 𝜙 𝑖𝑛(𝑁−2) + cos⁡(2𝜋𝑓𝑡+ 𝑁−1 ∗𝜙+ 𝜙 𝑖𝑛(𝑁−1) ) 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡+𝜙+ 𝜙 𝑖𝑛0 + e i2𝜋𝑓𝑡+2𝜙+ 2𝜙 𝑖𝑛1 + …….. e i2𝜋𝑓𝑡+ 𝑁−2 𝜙+ 𝜙 𝑖𝑛(𝑁−2) + e i2𝜋𝑓𝑡+ 𝑁−1 𝜙+ 𝜙 𝑖𝑛(𝑁−1 } 𝜙 𝑖𝑛𝑜 =0, 𝜙 𝑖𝑛1 = 𝜙 𝑖𝑛 , 𝜙 𝑖𝑛2 = 2𝜙 𝑖𝑛 ……….., 𝜙 𝑖𝑛1 = (𝑁−1)∗𝜙 𝑖𝑛 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡+𝜙+ 𝜙 𝑖𝑛 + e i2𝜋𝑓𝑡+2𝜙+ 2𝜙 𝑖𝑛 + …….. e i2𝜋𝑓𝑡+ 𝑁−2 𝜙+ (𝑁−2)𝜙 𝑖𝑛 + e i2𝜋𝑓𝑡+ 𝑁−1 𝜙+ (𝑁−2)𝜙 𝑖𝑛 } Goal is to move the maxima to a different angle theta .. 𝜙= 2𝜋 𝜆 ∗𝒅𝒄𝒐𝒔(𝜽) 𝑆𝑒𝑡 𝜙 𝑖𝑛 =−𝜙=− 2𝜋 𝜆 ∗𝒅𝒄𝒐𝒔(𝜽) 𝑅𝑥=𝑅𝑒{ e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡 + …….. e i2𝜋𝑓𝑡 + e i2𝜋𝑓𝑡 } 𝑅𝑥=𝑅𝑒{ Ne i2𝜋𝑓𝑡 } A maxima occurs in the direction of 𝜽

Rotating the beam 𝝓 𝒊𝒏 =−𝝓=− 𝟐𝝅 𝝀 ∗𝒅𝒄𝒐𝒔(𝟔𝟎) 𝝓 𝒊𝒏 =−𝝓=− 𝟐𝝅 𝝀 ∗𝒅𝒄𝒐𝒔(𝟒𝟓)

Networking applications

Acoustic Beamforming – noise suppression Silent zone Audible Zone

Other applications Localization Gesture tracking RF Imaging

Reception

Sensing Angle of Arrival (AoA) Tx Path difference = 𝒅𝒄𝒐𝒔(𝜽) 𝜃 Rx1 𝒅 Rx2 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕+𝝓 𝐜𝐨𝐬 𝟐𝝅𝒇𝒕 𝜙= 2𝜋 𝜆 ∗𝒅𝒄𝒐𝒔(𝜽) 𝜽(𝑨𝒐𝑨)=𝒂𝒄𝒐𝒔 𝝀𝝓 𝟐𝝅𝒅

Antenna array . . . Tx 𝜃 𝒅 𝒅 Rx(N) Rx(N-1) Rx2 Rx1 cos 2𝜋𝑓𝑡 cos 2𝜋𝑓𝑡+𝜙 2𝜋 𝑑𝑐𝑜𝑠(𝜃) 𝜆

𝑒 𝑖2𝜋𝑓𝑡 𝑒 𝑖0 cos 2𝜋𝑓𝑡 𝑒 𝑖0 𝑅 𝑥 1 𝑒 𝑖2𝜋𝑓𝑡+𝜙 𝑒 𝑖𝜙 𝑅 𝑥 2 𝑒 𝑖𝜙 cos 2𝜋𝑓𝑡+𝜙 𝑒 𝑖2𝜋𝑓𝑡+2𝜙 𝑒 𝑖2𝜙 𝑅 𝑥 3 𝑒 𝑖2𝜙 cos 2𝜋𝑓𝑡+2𝜙 𝑒 𝑖2𝜋𝑓𝑡 𝑠 𝑡 = = = = cos 2𝜋𝑓𝑡+(𝑁−2)𝜙 𝑒 𝑖(𝑁−2)𝜙 𝑅 𝑥 𝑁−1 𝑒 𝑖2𝜋𝑓𝑡+(𝑁−2)𝜙 𝑒 𝑖(𝑁−2)𝜙 𝑅 𝑥 𝑁 cos 2𝜋𝑓𝑡+(𝑁−1)𝜙 𝑒 𝑖𝜙 𝑒 𝑖2𝜋𝑓𝑡+(𝑁−1)𝜙 𝑒 𝑖𝜙

2𝜋 𝑑𝑐𝑜𝑠(𝜃) 𝜆 𝑒 𝑖0 𝑅 𝑥 1 𝑅 𝑥 2 𝑒 𝑖𝜙 𝑅 𝑥 3 𝑒 𝑖2𝜙 𝑠 𝑡 = 𝑅 𝑥 𝑁−1 𝑒 𝑖(𝑁−2)𝜙 𝑅 𝑥 𝑁 𝑒 𝑖𝜙 Steering vector

Multiple transmitters Tx2 Tx1 . . . 𝜃 𝒅 𝒅 Rx(N) Rx(N-1) Rx2 Rx1

Multiple transmitters 2𝜋 𝑑𝑐𝑜𝑠( 𝜃 1 ) 𝜆 2𝜋 𝑑𝑐𝑜𝑠( 𝜃 2 ) 𝜆 2𝜋 𝑑𝑐𝑜𝑠( 𝜃 𝑘 ) 𝜆 𝑅 𝑥 1 𝑒 𝑖0 𝑒 𝑖0 𝑒 𝑖0 𝑅 𝑥 2 𝑒 𝑖 𝜙 1 𝑒 𝑖 𝜙 2 𝑒 𝑖 𝜙 𝑘 𝑒 𝑖2 𝜙 𝑘 𝑅 𝑥 3 𝑒 𝑖2 𝜙 1 𝑒 𝑖2 𝜙 2 𝑠 1 𝑠 2 𝑠 𝑘 = + + 𝑅 𝑥 𝑁−1 𝑒 𝑖 𝑁−2 𝜙 1 𝑒 𝑖 𝑁−2 𝜙 2 𝑒 𝑖 𝑁−2 𝜙 𝑘 𝑅 𝑥 𝑁 𝑒 𝑖 (𝑁−1)𝜙 1 𝑒 𝑖 (𝑁−1)𝜙 2 𝑒 𝑖 (𝑁−1)𝜙 𝑘 Output is a linear combination of steering vectors from different directions

Multiple transmitters 𝑅 𝑥 1 𝑒 𝑖0 𝑒 𝑖0 𝑒 𝑖0 𝑠 1 𝑅 𝑥 2 𝑒 𝑖 𝜙 1 𝑒 𝑖 𝜙 2 𝑒 𝑖 𝜙 𝑘 𝑠 2 𝑅 𝑥 3 𝑒 𝑖2 𝜙 1 𝑒 𝑖2 𝜙 2 𝑒 𝑖2 𝜙 𝑘 = 𝑅 𝑥 𝑁−1 𝑒 𝑖 𝑁−2 𝜙 1 𝑒 𝑖 𝑁−2 𝜙 2 𝑒 𝑖 𝑁−2 𝜙 𝑘 𝑅 𝑥 𝑁 𝑒 𝑖 (𝑁−1)𝜙 1 𝑒 𝑖 (𝑁−1)𝜙 2 𝑒 𝑖 (𝑁−1)𝜙 𝑘 𝑠 𝑘 Steering Matrix (N x K) K sources (Input Vector) N receivers (Output vector)

Detecting AoA of K sources simultaneously

𝑅 𝑥 1 𝑒 𝑖0 𝑒 𝑖0 𝑒 𝑖0 𝑠 1 𝑅 𝑥 2 𝑒 𝑖 𝜙 1 𝑒 𝑖 𝜙 2 𝑒 𝑖 𝜙 𝑘 𝑠 2 𝑅 𝑥 3 𝑒 𝑖2 𝜙 1 𝑒 𝑖2 𝜙 2 𝑒 𝑖2 𝜙 𝑘 = 𝑅 𝑥 𝑁−1 𝑒 𝑖 𝑁−2 𝜙 1 𝑒 𝑖 𝑁−2 𝜙 2 𝑒 𝑖 𝑁−2 𝜙 𝑘 𝑅 𝑥 𝑁 𝑒 𝑖 (𝑁−1)𝜙 1 𝑒 𝑖 (𝑁−1)𝜙 2 𝑒 𝑖 (𝑁−1)𝜙 𝑘 𝑠 𝑘

Multiply by conjugate of steering vector of source 1 𝑅 𝑥 1 𝑒 −𝑖 (𝑁−1)𝜙 1 𝑒 𝑖0 𝑒 −𝑖 𝜙 1 𝑒 −𝑖 2𝜙 1 .. 𝑒 −𝑖 (𝑁−1)𝜙 1 𝑒 𝑖0 𝑒 −𝑖 𝜙 1 𝑒 −𝑖 2𝜙 1 .. 𝑒 𝑖0 𝑒 𝑖0 𝑒 𝑖0 𝑠 1 𝑅 𝑥 2 𝑒 𝑖 𝜙 1 𝑒 𝑖 𝜙 2 𝑒 𝑖 𝜙 𝑘 𝑠 2 𝑅 𝑥 3 𝑒 𝑖2 𝜙 1 𝑒 𝑖2 𝜙 2 𝑒 𝑖2 𝜙 𝑘 = 𝑅 𝑥 𝑁−1 𝑒 𝑖 𝑁−2 𝜙 1 𝑒 𝑖 𝑁−2 𝜙 2 𝑒 𝑖 𝑁−2 𝜙 𝑘 𝑅 𝑥 𝑁 𝑒 𝑖 (𝑁−1)𝜙 1 𝑒 𝑖 (𝑁−1)𝜙 2 𝑒 𝑖 (𝑁−1)𝜙 𝑘 𝑠 𝑘

𝑒 −𝑖 (𝑁−1)𝜙 1 𝑒 𝑖0 𝑒 −𝑖 𝜙 1 𝑒 −𝑖 2𝜙 1 .. 𝑅 𝑥 1 𝑠 1 𝑁 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 𝑅 𝑥 2 𝑠 2 𝑅 𝑥 3 = 𝑅 𝑥 𝑁−1 𝑅 𝑥 𝑁 𝑠 𝑘

𝑅 𝑥 1 𝑒 −𝑖 (𝑁−1)𝜙 1 𝑒 𝑖0 𝑒 −𝑖 𝜙 1 𝑒 −𝑖 2𝜙 1 .. A( 𝜃 1 ) = 𝑅 𝑥 2 𝑅 𝑥 3 = 𝑠 1 ∗𝑁+ 𝑠 2 ∗ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 + 𝑠 3 ∗ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 + …….. 𝑅 𝑥 𝑁−1 𝑅 𝑥 𝑁 All energy from direction 𝜃 1 ( 𝑓𝑟𝑜𝑚 𝑠 1 ) have been aggregated and amplified

𝑅 𝑥 1 𝑒 −𝑖 (𝑁−1)𝜙 2 𝑒 𝑖0 𝑒 −𝑖 𝜙 2 𝑒 −𝑖 2𝜙 2 .. A( 𝜃 2 ) = 𝑅 𝑥 2 𝑅 𝑥 3 = 𝑠 1 ∗(𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)+ 𝑠 2 ∗ 𝑁 + 𝑠 3 ∗ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 + …….. 𝑅 𝑥 𝑁−1 𝑅 𝑥 𝑁 All energy from direction 𝜃 2 ( 𝑓𝑟𝑜𝑚 𝑠 2 ) have been aggregated and amplified

𝑅 𝑥 1 𝑒 −𝑖 (𝑁−1)𝜙 𝑟 𝑒 𝑖0 𝑒 −𝑖 𝜙 𝑟 𝑒 −𝑖 2𝜙 𝑟 .. A( 𝜃 𝑟 ) = 𝑅 𝑥 2 𝑅 𝑥 3 = 𝑠 1 ∗(𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒)+ 𝑠 2 ∗ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 + 𝑠 3 ∗ 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒 + …….. 𝑅 𝑥 𝑁−1 𝑅 𝑥 𝑁 The resultant output is very low .. since multiplied steering vector does not match with any of the incoming signals

Construct a graph of for all values of Any active source from direction should have a peak in the above graph .. This is called delay and sum beamforming A(𝜃) 𝜃 𝜃 𝑠

Detecting multiple AoA 𝑻 𝒙 𝟐 𝑻 𝒙 𝟑 A(𝜃) AoA Spectrum 𝑻 𝒙 𝟏 Suc

Close by AoAs cannot be resolved 𝑻 𝒙 𝟑 𝑻 𝒙 𝟐 𝑻 𝒙 𝟏

MUSIC algorithm has sharp peaks to resolve close AoA Based on eigen decomposition and PCA – reference to be provided 𝐴 𝑚𝑢𝑠𝑖𝑐 (𝜃) 𝑻 𝒙 𝟑 𝑻 𝒙 𝟐 𝑻 𝒙 𝟏

Degrees of freedom for beamforming Antenna separation Initial phases of antenna sources Number of antennas