Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier 

Slides:



Advertisements
Similar presentations
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Advertisements

Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Volume 110, Issue 3, Pages (February 2016)
Kiersten M. Ruff, Siddique J. Khan, Rohit V. Pappu  Biophysical Journal 
Indrajeet Singh, Efrosyni Themistou, Lionel Porcar, Sriram Neelamegham 
Volume 99, Issue 11, Pages (December 2010)
Volume 103, Issue 10, Pages (November 2012)
Volume 103, Issue 9, Pages (November 2012)
Volume 103, Issue 5, Pages (September 2012)
Refolding of a High Molecular Weight Protein: Salt Effect on Collapse
Volume 113, Issue 12, Pages (December 2017)
Jeremy D. Wilson, Chad E. Bigelow, David J. Calkins, Thomas H. Foster 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
A. Delon, Y. Usson, J. Derouard, T. Biben, C. Souchier 
Intact Telopeptides Enhance Interactions between Collagens
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Jai A. Pathak, Rumi R. Sologuren, Rojaramani Narwal 
Volume 98, Issue 11, Pages (June 2010)
Volume 106, Issue 10, Pages (May 2014)
Kiersten M. Ruff, Siddique J. Khan, Rohit V. Pappu  Biophysical Journal 
Yong Wang, Paul Penkul, Joshua N. Milstein  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Volume 101, Issue 7, Pages (October 2011)
Aida Ebrahimi, Laszlo N. Csonka, Muhammad A. Alam  Biophysical Journal 
Cholesterol Depletion Mimics the Effect of Cytoskeletal Destabilization on Membrane Dynamics of the Serotonin1A Receptor: A zFCS Study  Sourav Ganguly,
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Volume 79, Issue 1, Pages (July 2000)
Masataka Chiba, Makito Miyazaki, Shin’ichi Ishiwata 
Volume 90, Issue 3, Pages (February 2006)
Volume 105, Issue 10, Pages (November 2013)
Volume 114, Issue 5, Pages (March 2018)
Actin Assembly at Model-Supported Lipid Bilayers
Volume 93, Issue 12, Pages (December 2007)
Samuel T. Hess, Watt W. Webb  Biophysical Journal 
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Tests of Continuum Theories as Models of Ion Channels. I
Validating Solution Ensembles from Molecular Dynamics Simulation by Wide-Angle X- ray Scattering Data  Po-chia Chen, Jochen S. Hub  Biophysical Journal 
Volume 109, Issue 3, Pages (August 2015)
Cyclic N-Terminal Loop of Amylin Forms Non Amyloid Fibers
Molecular Interactions of Alzheimer's Biomarker FDDNP with Aβ Peptide
The Effect of Dye-Dye Interactions on the Spatial Resolution of Single-Molecule FRET Measurements in Nucleic Acids  Nicolas Di Fiori, Amit Meller  Biophysical.
Structural Flexibility of CaV1. 2 and CaV2
The Denaturation Transition of DNA in Mixed Solvents
Volume 108, Issue 4, Pages (February 2015)
Aligning Paramecium caudatum with Static Magnetic Fields
P. Müller-Buschbaum, R. Gebhardt, S.V. Roth, E. Metwalli, W. Doster 
Volume 108, Issue 10, Pages (May 2015)
Hangyu Zhang, Amy Griggs, Jean-Christophe Rochet, Lia A. Stanciu 
Volume 110, Issue 9, Pages (May 2016)
Volume 93, Issue 10, Pages (November 2007)
Amyloid Fibrillation of Insulin under Water-Limited Conditions
Volume 108, Issue 9, Pages (May 2015)
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Nevra Ozer, Celia A. Schiffer, Turkan Haliloglu  Biophysical Journal 
Volume 114, Issue 3, Pages (February 2018)
Volume 113, Issue 12, Pages (December 2017)
The Role of Network Architecture in Collagen Mechanics
Yufang Wang, Ling Guo, Ido Golding, Edward C. Cox, N.P. Ong 
Ping-Jung Su, Wei-Liang Chen, Yang-Fang Chen, Chen-Yuan Dong 
Jochen Zimmer, Declan A. Doyle, J. Günter Grossmann 
Protein Structure and Hydration Probed by SANS and Osmotic Stress
Kinetic Folding Mechanism of Erythropoietin
Volume 97, Issue 2, Pages (July 2009)
Volume 108, Issue 9, Pages (May 2015)
George D. Dickinson, Ian Parker  Biophysical Journal 
Jennifer L. Ross, Henry Shuman, Erika L.F. Holzbaur, Yale E. Goldman 
Presentation transcript:

Structural Formation of Huntingtin Exon 1 Aggregates Probed by Small-Angle Neutron Scattering  Christopher B. Stanley, Tatiana Perevozchikova, Valerie Berthelier  Biophysical Journal  Volume 100, Issue 10, Pages 2504-2512 (May 2011) DOI: 10.1016/j.bpj.2011.04.022 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Aggregation kinetics of NtQ42P10 and the resulting fibrils. (A) Disappearance of monomeric NtQ42P10 (93 μM) from the supernatant solution (solid circles) and increasing ThT fluorescence (open circles) corresponding to the formation of ThT-binding amyloidlike aggregates. (Solid lines) Single-exponential fits to the data with an extrapolation of the ThT fluorescence fit (dashed line). (B) NtQ42P10 fibrils stained with Congo Red exhibit birefringence by polarizing optical microscopy (scale bar = 50 μm), which is indicative of amyloidlike aggregates. (C) TEM image of the fibrils formed by NtQ42P10 with a calculated fibril radius, R = 40 ± 8 Å and range of 28–56 Å. Biophysical Journal 2011 100, 2504-2512DOI: (10.1016/j.bpj.2011.04.022) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Time-resolved SANS on NtQ42P10 and analysis. Peptide concentration was 108 μM. (A) Select time-resolved SANS profiles, I(Q) versus Q, of NtQ42P10 at 26 (blue), 56 (green), 86 (yellow), and 1083 min (red). Kratky plots, Q2·I(Q) versus Q (inset, colors correspond to the same times in the main plot, error bars omitted for clarity) show the formation of a maximum about Q ≈ 0.03 Å−1 with time, which is indicative of an increase in folding and structural rigidity. (B) A representative Guinier plot and fits to the SANS curve for 26 min. (C) A representative modified Guinier plot and fits to the SANS curve for 86 min. (Error bars) Standard errors from the radial average of the intensity data on the neutron area detector. Biophysical Journal 2011 100, 2504-2512DOI: (10.1016/j.bpj.2011.04.022) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 Early aggregates of NtQ42P10 formed within the first 71 min. (A) The smallest species progressively grow from an initial Rg,1 of 16–46 Å over this time. (B) The corresponding change in molecular mass with time for the smaller aggregates, M1 = 22.6 to 123 kDa, with the number of NtQ42P10 peptides per aggregate, n (right axis) calculated from M1. (C) A plot of Rg,1 versus M1 compared to model calculations for a random coil (dashed line) using Eq. 4 and a solid sphere (solid line) using Eq. 5. (Error bars) Standard error from the Guinier fits. Biophysical Journal 2011 100, 2504-2512DOI: (10.1016/j.bpj.2011.04.022) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 Aggregates of NtQ42P10 beyond 1 h are predominately fibrillar and their two-dimensional cross section is analyzed. (A) Change in the two characteristic length-scales, Rc,1 (circles) and Rc,2 (triangles), with time. (Open symbols) Rc measurements where sample sedimentation was observed. (Solid lines) Single-exponential fits to the data. (B) Corresponding changes in ML,1 (circles) and ML,2 (triangles). (Solid lines) Single-exponential fits to the data. (C) A plot of Rc,1 versus ML,1 compared to model calculations for a solid cylinder cross section (solid line) using Eq. 6 and the Perutz hollow cylinder β-helix cross section for one, two, and three filaments per fibril (numbered squares) using Eqs. 7a, 7b, and 7c, respectively. (Dashed line) Guide to the eye. The corresponding points to the open-symbol data in panel A are omitted from panels B and C, because sample sedimentation influenced ML values. (Error bars) Standard error from the modified Guinier fits. (D) Schematics of the hollow cylinder models for one, two, and three filaments per fibril used to calculate Rc in panel C. The inner and outer radii of a single filament, Ri and Ro, respectively, are indicated on model 1. Biophysical Journal 2011 100, 2504-2512DOI: (10.1016/j.bpj.2011.04.022) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 SANS data obtained over a larger Q-range allow the NtQ42P10 fibril structure to be more carefully probed. Peptide concentration was 89 μM. A long-cylinder form factor fit (solid line) accounts for the SANS profile at high and intermediate Q values. Deviations observed between the experimental scattering data and the extrapolated fit (dashed line) at Q < 0.02 Å−1 are due to favorable fibril-fibril interactions. The modified Guinier plot of the SANS profile (inset) shows two linear fit regions, denoted as 1 and 2, with the resulting Rc and ML values given in the text. (Error bars) Standard errors from the radial average of the intensity data on the neutron area detector. Biophysical Journal 2011 100, 2504-2512DOI: (10.1016/j.bpj.2011.04.022) Copyright © 2011 Biophysical Society Terms and Conditions