Volume 96, Issue 6, Pages (March 2009)

Slides:



Advertisements
Similar presentations
Molecular Organization of the Tear Fluid Lipid Layer Pipsa Kulovesi, Jelena Telenius, Artturi Koivuniemi, Gerald Brezesinski, Antti Rantamäki, Tapani Viitala,
Advertisements

How Do Thermophilic Proteins and Proteomes Withstand High Temperature? Lucas Sawle, Kingshuk Ghosh Biophysical Journal Volume 101, Issue 1, Pages
Location, Structure, and Dynamics of the Synthetic Cannabinoid Ligand CP-55,940 in Lipid Bilayers Tomohiro Kimura, Kejun Cheng, Kenner C. Rice, Klaus Gawrisch.
Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Nonlinear Poisson Equation for Heterogeneous Media Langhua Hu, Guo-Wei Wei Biophysical Journal Volume 103, Issue 4, Pages (August 2012) DOI: /j.bpj
Volume 84, Issue 1, Pages (January 2003)
Line Active Hybrid Lipids Determine Domain Size in Phase Separation of Saturated and Unsaturated Lipids  Robert Brewster, Samuel A. Safran  Biophysical.
Maryam Sayadi, Seiichiro Tanizaki, Michael Feig  Biophysical Journal 
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Kinetic Hysteresis in Collagen Folding
Ismail M. Hafez, Steven Ansell, Pieter R. Cullis  Biophysical Journal 
Volume 84, Issue 5, Pages (May 2003)
Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains  Li Li, Haifeng Wang, Ji-Xin Cheng  Biophysical.
Volume 97, Issue 4, Pages (August 2009)
Volume 76, Issue 2, Pages (February 1999)
Volume 97, Issue 5, Pages (September 2009)
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Scott D. Shoemaker, T. Kyle Vanderlick  Biophysical Journal 
Sphingomyelin/Phosphatidylcholine/Cholesterol Phase Diagram: Boundaries and Composition of Lipid Rafts  Rodrigo F.M. de Almeida, Aleksandre Fedorov, Manuel.
Insertion of Alzheimer’s Aβ40 Peptide into Lipid Monolayers
Volume 96, Issue 11, Pages (June 2009)
Volume 106, Issue 12, Pages (June 2014)
Volume 91, Issue 5, Pages (September 2006)
Reversible Liposome Association Induced by LAH4: A Peptide with Potent Antimicrobial and Nucleic Acid Transfection Activities  Arnaud Marquette, Bernard.
Volume 103, Issue 4, Pages (August 2012)
Terhi Maula, Md. Abdullah Al Sazzad, J. Peter Slotte 
Volume 86, Issue 4, Pages (April 2004)
Lipid Interactions and Organization in Complex Bilayer Membranes
Volume 92, Issue 9, Pages (May 2007)
Volume 78, Issue 3, Pages (March 2000)
Volume 114, Issue 2, Pages (January 2018)
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Volume 107, Issue 6, Pages (September 2014)
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Michael Katzer, William Stillwell  Biophysical Journal 
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Holly C. Gaede, Klaus Gawrisch  Biophysical Journal 
Roman Volinsky, Riku Paananen, Paavo K.J. Kinnunen  Biophysical Journal 
Biophysical and Transfection Studies of the diC14-Amidine/DNA Complex
Volume 106, Issue 3, Pages (February 2014)
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Giant Unilamellar Vesicles Electroformed from Native Membranes and Organic Lipid Mixtures under Physiological Conditions  L.-Ruth Montes, Alicia Alonso,
Volume 96, Issue 11, Pages (June 2009)
Volume 96, Issue 6, Pages (March 2009)
Kinetic Hysteresis in Collagen Folding
Volume 93, Issue 2, Pages (July 2007)
Erik Hellstrand, Emma Sparr, Sara Linse  Biophysical Journal 
Abhishek Mandal, Patrick C.A. van der Wel  Biophysical Journal 
Interaction of Verapamil with Lipid Membranes and P-Glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity  M. Meier,
Lipid Raft Composition Modulates Sphingomyelinase Activity and Ceramide-Induced Membrane Physical Alterations  Liana C. Silva, Anthony H. Futerman, Manuel.
Desmosterol May Replace Cholesterol in Lipid Membranes
Translational Entropy and DNA Duplex Stability
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
Volume 94, Issue 11, Pages (June 2008)
The Role of Cholesterol in Driving IAPP-Membrane Interactions
Volume 80, Issue 3, Pages (March 2001)
Jesús Sot, Luis A. Bagatolli, Félix M. Goñi, Alicia Alonso 
K.A. Riske, L.Q. Amaral, H.-G. Döbereiner, M.T. Lamy 
Volume 80, Issue 5, Pages (May 2001)
Arnoldus W.P. Vermeer, Willem Norde  Biophysical Journal 
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
Volume 109, Issue 9, Pages (November 2015)
Volume 105, Issue 11, Pages (December 2013)
Main Phase Transitions in Supported Lipid Single-Bilayer
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Deuterium NMR Study of the Effect of Ergosterol on POPE Membranes
Sabine Bosk, Julia A. Braunger, Volker Gerke, Claudia Steinem 
Volume 76, Issue 1, Pages (January 1999)
Volume 80, Issue 3, Pages (March 2001)
Domain Growth, Shapes, and Topology in Cationic Lipid Bilayers on Mica by Fluorescence and Atomic Force Microscopy  Ariane E. McKiernan, Timothy V. Ratto,
Presentation transcript:

Volume 96, Issue 6, Pages 2216-2226 (March 2009) Ceramide-1-Phosphate, in Contrast to Ceramide, Is Not Segregated into Lateral Lipid Domains in Phosphatidylcholine Bilayers  Michael R. Morrow, Anne Helle, Joshua Perry, Ilpo Vattulainen, Susanne K. Wiedmer, Juha M. Holopainen  Biophysical Journal  Volume 96, Issue 6, Pages 2216-2226 (March 2009) DOI: 10.1016/j.bpj.2008.11.060 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 Structures of DPPC, N-hexadecanoyl-D-erythro-ceramide (C16-ceramide), and N-hexadecanoyl-D-erythro-ceramide-1-phosphate (C16-C1P) used in this study. Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 (a) High-sensitivity DSC heating scans for multilamellar DPPC/C16-ceramide vesicles (MLVs). (b) Data for the same MLVs recorded upon cooling. Also shown are the (c) heating and (d) cooling scans for DPPC/C16-C1P MLVs. The mole fraction of ceramide, Xcer, or ceramide-1-phosphate, XC1P, is indicated in the figure. The total lipid concentration was 1 mM in 20 mM HEPES, 0.1 mM EDTA, and 150 mM NaCl (pH 7.4). Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 2H-NMR spectra at selected temperatures for (a) DPPC-d62, (b) DPPC-d62 plus C16-ceramide at Xcer = 0.2, (c) DPPC-d62 plus C16-C1P at XC1P = 0.2, (d) DPPC-d62 plus C16-ceramide at Xcer = 0.4, and (e) DPPC-d62 plus C16-C1P at XC1P = 0.4. All samples were in the form of vesicles suspended in a buffer of 20 mM HEPES, 0.1 mM EDTA, and 150 mM NaCl at pH = 7.4. Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Temperature dependence of 2H-NMR first spectral moments (M1) for DPPC-d62 plus (a) C16-ceramide or (b) C16-C1P. Both panels show results for (○) DPPC-d62 alone and DPPC-d62 plus C16-ceramide or C16-C1P at mole fractions of (∇) X = 0.1, (Δ) X = 0.2, (◊) X = 0.3, and (□) X = 0.4. Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Panels a–c show 2H-NMR spectra at selected temperatures for (a) POPC-d31, (b) POPC-d32 plus C16-ceramide at Xcer = 0.2, and (c) POPC-d31 plus C16-C1P at XC1P = 0.2. Panel d shows the temperature dependence of 2H-NMR first spectral moments (M1) for (○) POPC-d31, (□) POPC-d31 plus C16-ceramide at Xcer = 0.2, and (Δ) POPC-d31 plus C16-C1P at XC1P = 0.2. All samples were in the form of vesicles suspended in a buffer of 20 mM HEPES, 0.1 mM EDTA, and 150 mM NaCl at pH = 7.4 using a freeze-thaw hydration protocol. Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 (a) Intermolecular Ie/Im for PPDPC (X =0.01) measured for MLVs composed of POPC and the indicated contents of C16-ceramide (■) or C16-C1P (○). (b) Fluorescence anisotropy (r) for DPH (X = 0.002) residing in binary MLVs composed of POPC and C16-ceramide (■) or C16-C1P (○). The total lipid concentration was 22.5 μM in 20 mM HEPES, 0.1 mM EDTA, and 150 mM NaCl (pH 7.4). The temperature was maintained at 25°C with a circulating waterbath. Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 7 Panels a and b show partial-phase diagrams obtained from DSC observations for DPPC with C16-ceramide up to Xcer = 0.40 (a) and DPPC with C16-C1P up to XC1P = 0.40 (b). See text for details. The lines connecting measured data points represent guides to the eye. Panels c and d show partial phase diagrams for DPPC-d62 with C16-ceramide determined from NMR studies up to Xcer = 0.40 (c) and DPPC-d62 with C16-C1P up to XC1P = 0.40 (d). Biophysical Journal 2009 96, 2216-2226DOI: (10.1016/j.bpj.2008.11.060) Copyright © 2009 Biophysical Society Terms and Conditions