Unit 2. Day 10..

Slides:



Advertisements
Similar presentations
Adding and Subtracting Fractions with Like Denominators.
Advertisements

Lesson #13 Adding & Subtracting Rational Expressions.
Section 8.8.  In this lesson you will learn to add, subtract, multiply, and divide rational expressions. In the previous lesson you combined a rational.
Goal: Add and subtract rational expressions. Eligible Content: A ADDING AND SUBTRACTING RATIONAL EXPRESSIONS.
12-6 Rational Expressions with Like Denominators Objective: Students will be able to add and subtract rational expressions with like denominators.
Add / Subtract Rational Numbers: Unlike Fractions.
Lesson 8-2: Adding and Subtracting Rational Expressions.
Adding & Subtracting Fractions Lesson 9. Math Vocabulary Fraction: A math term that shows part of a whole or part of a set. Numerator: TOP number of a.
COURSE 2 LESSON Find , or 4 Estimate 21 Add the fractions. Add the whole numbers = Write.
Warm-up Divide. 1. (x 6 – x 5 + x 4 ) ÷ x 2 2. (9c 4 + 6c 3 – c 2 ) ÷ 3c 2 3. (x 2 – 5x + 6) ÷ (x – 2) 4. (2x 2 + 3x – 11) ÷ (x – 3)
Adding and Subtracting Rational Expressions with Different Denominators Find the LCD of two or more rational expressions. 2.Given two rational expressions,
Directed Numbers. SandcastleHole in the sand +1 or = = (+1) = (-1) = 0.
Lesson 5.2 Adding and Subtracting Mixed Numbers 11/30/09.
COURSE 2 LESSON 4-2 Find Keep the denominator the same = Add the numerators. The answer is close to the estimate
11.5 Adding and Subtracting Rational Expressions
Adding and Subtracting Rational Expressions
Rational Numbers Adding Like Fractions
08/24/2017 Writing to Win Strategy: K-Free Writing
Fractions: Adding and Subtracting Like Denominators
Subtraction by counting on
Unit 2. Day 4..
Adding & Subtracting Rational Expressions
Objective The student will be able to:
Rational Numbers Guided Notes
Unit 2. Day 10..
Unit 2. Day 1..
Opening Activity Complete the following problems in your spiral on your “Multiplying Positive & Negative Integers” page. Write both the expression.
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Unit 1. Day 1..
Unit 1. Day 4..
Unit 1. Day 7..
Unit 3. Day 2..
Unit 3. Day 16..
Unit 2. Day 6..
Unit 2. Day 5..
Unit 3. Day 1..
USES OF PROMISSORY NOTES
Designing Algorithms for Multiplication of Fractions
Label your paper DNA 5.
Unit 2. Day 4..
Unit 2. Day 4..
Unit 3. Day 22..
Unit 2. Day 5..
Unit 2. Day 11..
Adding and Subtracting Rational Numbers
Unit 4. Day 4..
Unit 4. Day 5..
Fractions: Adding and Subtracting Like Denominators
Adding and Subtracting Rational Numbers
Simplifying Complex Rational Expressions
Unit 2. Day 7..
Evaluate the expression: 2(10−2)÷ ÷ ÷4 16÷4 =4
Add and subtract Rationals with Unlike denominators
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 13..
Unit 3. Day 3..
Unit 2. Day 8..
Unit 2. Day 12..
Loading… Please Wait $ $ $100 $100 $100 $100 $100 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500.
Adding and subtracting fractions
I can add and subtract like fractions at least at 80% proficiency.
Objective The student will be able to:
Adding and Subtracting Rational Expressions
Agenda Meditation 29-1 Homework Warm Up
Sequences Example Continue the following sequences for the next two terms 1, 2, 3, 4, 5, ……… 2, 4, 6, 8, 10, ………… 1, 3, 5, 7, 9, ………….. 4, 8, 12, 16, ………….
Add & Subtract Fractions
Presentation transcript:

Unit 2. Day 10.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Adding & Subtracting Rational Numbers 7.NS.A.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers (fractions)

Q: What is a rational number? A: A number that can be written as a fraction 𝑝 𝑞 − 5 7 − 5 7 2 3 2 3 −4 5 6 −4 5 6 0.875 0.875 −16. 3 −16. 3 Today: + +

−2.4 + 3 4 −2 1 2 3 4 − 2 1 2 Example A: −2.4 + 3 4 −2 1 2 3 4 − 2 1 2 −2.4 −2.4 − 24 10 3 4 − 5 2 + −2.4 + 0.75 −2.5 −2.5 − 20 48 20 15 − 20 50 + − −48+15−50 20 − −33 1 −50 20 1 3 1 1 2 . 4 1 . 6 5 − 0 . 7 5 + 2 . 5 −4 3 20 −83 = 1 1 . 6 5 . 6 5 . 20 4 4.15 1 5

Which way is better?

−0.8 + 2 3 2 3 Example -: −0.8 − 8 10 2 3 + − 30 24 30 20 + −24+20 30 −4 −2 15 = 30 =

Example -: −0.8 + 2 3 2 3 −0.8 −0.8 + 0.6666666666666… − 7 1 0 . 8 −2 15 − = 0 . 6 7 0 . 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 −0.1 3 0.13 . 1 3

Example B*: + −1 1 6 +4.5 − −2 5 6 −1 1 6 2 5 6 4.5 − 7 6 45 10 17 6 + + − 30 35 30 135 85 30 + + −35+135+85 30 6 1 6 37 6 185 + 85 30 100 = = 30 =

Groups

−5.2− −3.1 +5.2 Example C: Example D: Example E: Example F: 32 + −12 7 8 Example D: 3 1 6 +20.3 − −5 5 6 Example E: 16 20 − −1.8 − 4 5 Example F: S.51 Exercise 2

+ Example C: −5.2− −3.1 +5.2 3.1

Example D*: 32 + −12 7 8 −12 7 8 32 32 1 − 103 8 8 256 − 8 103 256−103 8 153 8 19 1 8 =

+ + 9 29.3 + + Example E*: 3 1 6 +20.3 − −5 5 6 3 1 6 +20.3 − −5 5 6 3 1 6 +20.3 − −5 5 6 3 1 6 +20.3 − −5 5 6 3 1 6 5 5 6 3 1 6 5 5 6 20.3 20.3 19 6 203 10 35 6 + + 19 6 35 6 + 30 95 30 609 175 30 + + 6 54 95+609+175 30 9 + 879 30 293 10 29 3 10 = = = 29.3 29.3

Example F: + 16 20 − −1.8 − 4 5 16 20 − 4 5 1.8 4 5 4 5 + 18 10 − 4 5 18 10 − 4 5 18 10 + 10 8 18 −8 10 10 + + 9 5 1.8 8+18−8 10 1 4 5 26 −8 10 9 5 1 4 5 18 = 10 = =