Elizabeth A. Normand, Matthew N. Rasband  Developmental Cell 

Slides:



Advertisements
Similar presentations
Extracellular Matrix Protein Anosmin Promotes Neural Crest Formation and Regulates FGF, BMP, and WNT Activities Yukinori Endo, Hiroko Ishiwata-Endo, Kenneth.
Advertisements

ER-to-Plasma Membrane Tethering Proteins Regulate Cell Signaling and ER Morphology Andrew G. Manford, Christopher J. Stefan, Helen L. Yuan, Jason A. MacGurn,
Cultured Schwann Cells Constitutively Express the Myelin Protein P0 Lili Cheng, Anne W Mudge Neuron Volume 16, Issue 2, Pages (February 1996) DOI:
CDK Inhibitors: Cell Cycle Regulators and Beyond Arnaud Besson, Steven F. Dowdy, James M. Roberts Developmental Cell Volume 14, Issue 2, Pages
LC3 Binding to the Scaffolding Protein JIP1 Regulates Processive Dynein-Driven Transport of Autophagosomes Meng-meng Fu, Jeffrey J. Nirschl, Erika L.F.
Gastrulation Movements: the Logic and the Nuts and Bolts Maria Leptin Developmental Cell Volume 8, Issue 3, Pages (March 2005) DOI: /j.devcel
Neuroglia and Myelin Dr. Raymond Colello
Volume 74, Issue 3, Pages (May 2012)
Is Good Housekeeping the Key to Motor Neuron Survival?
Molecular Genetics of Demyelination: New Wrinkles on an Old Membrane
Michele Curcio, Frank Bradke  Neuron 
Dynein’s Life in the Slow Lane
Volume 28, Issue 2, Pages (January 2014)
R. Douglas Fields, Dong Ho Woo, Peter J. Basser  Neuron 
Amanda Brosius Lutz, Ben A. Barres  Developmental Cell 
Organizing Principles of the Axoglial Apparatus
Wt1 Flip-Flops Chromatin in a CTCF Domain
Neuronal Growth and Death: Order and Disorder in the Axoplasm
Three Mechanisms Assemble Central Nervous System Nodes of Ranvier
Fibrinogen in the Nervous System: Glia Beware
Volume 30, Issue 2, Pages (May 2001)
Asymmetric Cell Division: A Persistent Issue?
Volume 85, Issue 2, Pages (January 2015)
A Surviving Intact Branch Stabilizes Remaining Axon Architecture after Injury as Revealed by In Vivo Imaging in the Mouse Spinal Cord  Ariana O. Lorenzana,
Nat. Rev. Neurol. doi: /nrneurol
Volume 136, Issue 6, Pages (March 2009)
Naomi R. Stevens, Hélio Roque, Jordan W. Raff  Developmental Cell 
Volume 17, Issue 1, Pages R29-R35 (January 2007)
Volume 69, Issue 2, Pages (January 2011)
First Node of Ranvier Facilitates High-Frequency Burst Encoding
Figure 1 The node of Ranvier
Stefan Schmidt, Barbara E. Ehrlich  Neuron 
Michele Curcio, Frank Bradke  Neuron 
Li E. Cheng, Wei Song, Loren L. Looger, Lily Yeh Jan, Yuh Nung Jan 
Volume 13, Issue 4, Pages (October 2007)
Volume 35, Issue 1, Pages (October 2015)
Volume 65, Issue 4, Pages (February 2010)
Volume 11, Issue 23, Pages (November 2001)
EB1-Recruited Microtubule +TIP Complexes Coordinate Protrusion Dynamics during 3D Epithelial Remodeling  Sarah Gierke, Torsten Wittmann  Current Biology 
Volume 89, Issue 3, Pages (February 2016)
Axon/Dendrite Targeting of Metabotropic Glutamate Receptors by Their Cytoplasmic Carboxy-Terminal Domains  Julia Nash Stowell, Ann Marie Craig  Neuron 
Proteins in Plant Brassinosteroid Signaling
A Radial Actin Network in Apical Constriction
Volume 20, Issue 5, Pages (May 1998)
Matthew S. Kayser, Mark J. Nolt, Matthew B. Dalva  Neuron 
Hans Schotman, Leena Karhinen, Catherine Rabouille  Developmental Cell 
Volume 12, Issue 4, Pages (April 2007)
A Change in the Selective Translocation of the Kinesin-1 Motor Domain Marks the Initial Specification of the Axon  Catherine Jacobson, Bruce Schnapp,
Remote Control of Gene Function by Local Translation
ΒIV Spectrinopathies Cause Profound Intellectual Disability, Congenital Hypotonia, and Motor Axonal Neuropathy  Chih-Chuan Wang, Xilma R. Ortiz-González,
A Gate Keeper for Axonal Transport
Profiling the Sulfation Specificities of Glycosaminoglycan Interactions with Growth Factors and Chemotactic Proteins Using Microarrays  Eric L. Shipp,
Volume 69, Issue 5, Pages (March 2011)
Volume 13, Issue 12, Pages (December 2015)
Three Mechanisms Assemble Central Nervous System Nodes of Ranvier
Volume 10, Issue 8, Pages (March 2015)
mRNA Localization: Gene Expression in the Spatial Dimension
Volume 26, Issue 20, Pages R971-R975 (October 2016)
Colocalisation and influence on migration.
Dynamics and Mechanisms of CNS Myelination
Volume 34, Issue 4, Pages (August 2015)
Volume 97, Issue 3, Pages e6 (February 2018)
Mechanisms of Mechanotransduction
Septins and the Lateral Compartmentalization of Eukaryotic Membranes
Nerve Control of Blood Vessel Patterning
Volume 26, Issue 11, Pages (June 2016)
The Role of Selective Transport in Neuronal Protein Sorting
Neuronal Polarity: MAP2 Shifts Secretory Vesicles into High Gear for Long-Haul Transport down the Axon  Luís F. Ribeiro, Joris de Wit  Neuron  Volume.
Volume 27, Issue 7, Pages (April 2017)
Polarized Domains of Myelinated Axons
Presentation transcript:

Subcellular Patterning: Axonal Domains with Specialized Structure and Function  Elizabeth A. Normand, Matthew N. Rasband  Developmental Cell  Volume 32, Issue 4, Pages 459-468 (February 2015) DOI: 10.1016/j.devcel.2015.01.017 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Examples of Axonal Patterning (A) A cultured hippocampal neuron immunostained to mark the somatodendritic domain (magenta, MAP2), the axon initial segment (green, AnkG), and the axon (red, tubulin). Scale bar, 25 μm. (B) Low-magnification view of optic nerve axons immunostained using antibodies against juxtaparanodal Kv1.2 (red), paranodal Caspr (green), and nodal NF186 (magenta). Scale bar, 50 μm. (C) High-magnification view of optic nerve axons immunostained using antibodies against juxtaparanodal Kv1.2 (red), paranodal Caspr (green), and nodal NF186 (magenta). Scale bar, 20 μm. (D) Triple immunostaining of PNS node of Ranvier immunostained for nodal Na+ channels (green), paranodal Caspr (red), and juxtaparanodal K+ channels (blue). A phase contrast image of the myelin sheath was merged with the fluorescence image to show the outline of the myelin sheath. Scale bar, 5 μm. Developmental Cell 2015 32, 459-468DOI: (10.1016/j.devcel.2015.01.017) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Membrane Domain Organization of Myelinated Axons Axons have distinct axonal patterns and boundaries, including the proximal AIS (1), the distal AIS and intra-axonal boundary (2), the node of Ranvier (3), the paranodal junctions (4), the juxtaparanodes (5), internodal length (6), and axon/dendrite polarity (7). The patterns (1), (2), and (7) are determined by intrinsic mechanisms, whereas (3)–(6) are determined by extrinsic neuron-glia interactions. Developmental Cell 2015 32, 459-468DOI: (10.1016/j.devcel.2015.01.017) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Intrinsic and Extrinsic Mechanisms of Axonal Patterning (A) Two glia-dependent mechanisms cluster NF186 in the axonal membrane. In the PNS, the primary (1) mechanism depends on interactions with gliomedin and NrCAM at the Schwann cell microvilli, and the secondary (2) mechanism depends on the barrier function of the paranodal junctions. In the CNS, the primary (1) mechanism depends on the barrier function of the paranodal junctions, whereas the secondary (2) mechanism depends on interactions with secreted NrCAM and chondroitin sulfate proteoglycans found at the nodal extracellular matrix. NF186 functions to recruit nodal AnkG (3), which then clusters Na+ channels and links the nodal protein complex to the βIV spectrin-based cytoskeleton (4). (B) AnkB-dependent (blue) gene expression or a temporal delay in AnkG (red) expression may contribute to the intra-axonal boundary. (C) Repulsion or structural exclusion of Ankyrin/Spectrin protein complexes may help assemble distinct AnkB and AnkG-containing axonal domains. (D) Differential transport rates may help establish differences in Ankyrin protein localization along the axon. (E) Differential stability of Ankyrin/Spectrin protein complexes may help establish intra-axonal cytoskeletal boundaries. Developmental Cell 2015 32, 459-468DOI: (10.1016/j.devcel.2015.01.017) Copyright © 2015 Elsevier Inc. Terms and Conditions