Volume 24, Issue 2, Pages (July 2018)

Slides:



Advertisements
Similar presentations
Volume 23, Issue 18, Pages (September 2013)
Advertisements

Volume 86, Issue 5, Pages (June 2015)
Volume 22, Issue 16, Pages (August 2012)
Volume 19, Issue 8, Pages (May 2017)
Volume 83, Issue 2, Pages (July 2014)
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 88, Issue 3, Pages (November 2015)
Emmanuel Eggermann, Yves Kremer, Sylvain Crochet, Carl C.H. Petersen 
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Volume 93, Issue 2, Pages (January 2017)
Volume 9, Issue 5, Pages (December 2014)
Cell-Type-Specific Sensorimotor Processing in Striatal Projection Neurons during Goal- Directed Behavior  Tanya Sippy, Damien Lapray, Sylvain Crochet,
Volume 97, Issue 1, Pages e5 (January 2018)
A MicroRNA124 Target Sequence Restores Astrocyte Specificity of gfaABC1D-Driven Transgene Expression in AAV-Mediated Gene Transfer  Grit Taschenberger,
Cortico-Accumbens Regulation of Approach-Avoidance Behavior Is Modified by Experience and Chronic Pain  Neil Schwartz, Catriona Miller, Howard L. Fields 
Volume 22, Issue 12, Pages (March 2018)
Volume 18, Issue 4, Pages (January 2017)
Volume 11, Issue 6, Pages (May 2015)
Volume 86, Issue 5, Pages (June 2015)
Euiseok J. Kim, Matthew W. Jacobs, Tony Ito-Cole, Edward M. Callaway 
Volume 96, Issue 4, Pages e5 (November 2017)
Brad K. Hulse, Evgueniy V. Lubenov, Athanassios G. Siapas  Cell Reports 
Volume 11, Issue 12, Pages (June 2015)
Optogenetic Activation of Normalization in Alert Macaque Visual Cortex
Volume 93, Issue 2, Pages (January 2017)
Volume 89, Issue 5, Pages (March 2016)
Jason Jacoby, Yongling Zhu, Steven H. DeVries, Gregory W. Schwartz 
Volume 22, Issue 12, Pages (March 2018)
Volume 19, Issue 8, Pages (May 2017)
Volume 11, Issue 6, Pages (May 2015)
Volume 93, Issue 2, Pages (January 2017)
Inhibitory Interplay between Orexin Neurons and Eating
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 113, Issue 10, Pages (November 2017)
Guifen Chen, Daniel Manson, Francesca Cacucci, Thomas Joseph Wills 
A Corticothalamic Circuit for Refining Tactile Encoding
Volume 18, Issue 4, Pages (April 2010)
Volume 97, Issue 1, Pages e5 (January 2018)
Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala
Volume 88, Issue 3, Pages (November 2015)
Volume 15, Issue 11, Pages (June 2016)
Volume 87, Issue 2, Pages (July 2015)
Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness  Miguel Remondes, Matthew A. Wilson  Cell.
Molecular Therapy - Methods & Clinical Development
Volume 5, Issue 2, Pages (February 2002)
Ana Parabucki, Ilan Lampl  Cell Reports 
Volume 86, Issue 3, Pages (May 2015)
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Ryan G. Natan, Winnie Rao, Maria N. Geffen  Cell Reports 
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
Hiroyuki K. Kato, Shea N. Gillet, Jeffry S. Isaacson  Neuron 
Volume 22, Issue 7, Pages (February 2018)
Han Xu, Hyo-Young Jeong, Robin Tremblay, Bernardo Rudy  Neuron 
Target-Specific Glycinergic Transmission from VGluT3-Expressing Amacrine Cells Shapes Suppressive Contrast Responses in the Retina  Nai-Wen Tien, Tahnbee.
Volume 15, Issue 11, Pages (November 2007)
Cell-Type Specificity of Callosally Evoked Excitation and Feedforward Inhibition in the Prefrontal Cortex  Paul G. Anastasiades, Joseph J. Marlin, Adam.
Akinori Mitani, Mingyuan Dong, Takaki Komiyama  Current Biology 
Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1  Katelyn N. Benthall, Stacie L. Ong, Helen S.
Volume 86, Issue 5, Pages (June 2015)
Volume 17, Issue 11, Pages (December 2016)
Volume 23, Issue 18, Pages (September 2013)
Volume 24, Issue 10, Pages (September 2018)
Sorting Nexin 27 Regulation of G Protein-Gated Inwardly Rectifying K+ Channels Attenuates In Vivo Cocaine Response  Michaelanne B. Munoz, Paul A. Slesinger 
Volume 24, Issue 13, Pages e4 (September 2018)
Comparative Evaluation of Genetically Encoded Voltage Indicators
Volume 95, Issue 5, Pages e4 (August 2017)
Multisensory Integration in the Mouse Striatum
Volume 25, Issue 6, Pages (March 2015)
Dynamic- and Frequency-Specific Regulation of Sleep Oscillations by Cortical Potassium Channels  Christine M. Muheim, Andrea Spinnler, Tina Sartorius,
Presentation transcript:

Volume 24, Issue 2, Pages 294-303 (July 2018) A MicroRNA-Based Gene-Targeting Tool for Virally Labeling Interneurons in the Rodent Cortex  Marianna K. Keaveney, Hua-an Tseng, Tina L. Ta, Howard J. Gritton, Heng-Ye Man, Xue Han  Cell Reports  Volume 24, Issue 2, Pages 294-303 (July 2018) DOI: 10.1016/j.celrep.2018.06.049 Copyright © 2018 The Author(s) Terms and Conditions

Cell Reports 2018 24, 294-303DOI: (10.1016/j.celrep.2018.06.049) Copyright © 2018 The Author(s) Terms and Conditions

Figure 1 mAGNET Gene-Targeting Strategy and LV-GABA-mAGNET Targeting in the Mouse Cortex (A) Schematic of viral, microRNA-guided neuron tag (mAGNET) gene-targeting strategy. (B) LV-GABA-mAGNET and LV-Control lentiviral vector designs; LTR = long terminal repeat, hSyn = human synapsin promoter, EGFP = enhanced green fluorescent protein, and WPRE = woodchuck hepatitis virus post-regulatory element. miR128T/miR221T refer to cassettes of eight respective miRNA target sites – note that these sites are not shown to scale—they are enlarged for visualization purposes. (C) Schematics of stereotaxic virus injection sites in mouse cortex. (D) Confocal microscopy images showing comparison of lentivirus transduction in WT mouse cortex (cortex 1 injection site). Scale bars, 250 μm. (E) Colocalization of EGFP+ cells with inhibitory (GABA) and excitatory (CamKIIα) cell markers in the WT mouse cortex (n = 3 mice each). Scatterplot shows individual animals (circles) and mean (horizontal bar) ± SD. ∗∗∗p < 0.005, Pearson’s chi-square test. (F and G) Representative confocal images of EGFP+ cortical cells transduced with LV-Control (F) or LV-GABA-mAGNET (G), immunofluorescence of inhibitory (GABA) and excitatory (CamKIIα) cell markers, and colocalization. Scale bars, 35 μm. See also Figure S1 and Tables S1 and S2. Cell Reports 2018 24, 294-303DOI: (10.1016/j.celrep.2018.06.049) Copyright © 2018 The Author(s) Terms and Conditions

Figure 2 Selective Interneuron Labeling with rAAV2.9 Packaged GABA mAGNET in the Mouse Cortex (A) AAV-GABA-mAGNET and AAV-Control vector designs. (B) Confocal microscopy images showing comparison of AAV transduction in C57bL/6 WT mouse cortex (cortex 1 site). Scale bars, 250 μm. (C) Colocalization of EGFP+ cells with inhibitory and excitatory marker immune stains in the C57bL/6 WT mouse cortex (n = 3 mice each). Scatterplot shows individual animals (circles) and mean (horizontal bar) ± SD. ∗∗∗p < 0.005, Pearson’s chi-square test (see Experimental Procedures). (D–E) Representative confocal images of EGFP+ cortical cells transduced with AAV-Control (D) or AAV-GABA-mAGNET(E), immunofluorescence of inhibitory (GABA) and excitatory (CamKIIα) cell markers, and colocalization. Scale bars, 35 μm. (F) Co-injected AAV-CamKIIα-mRuby2 and AAV-GABA-mAGNET viral vector designs. (G) Confocal microscopy images showing cells transduced by AAV-CamKIIα-mRuby2 (red) and AAV-GABA-mAGNET (green) in the cortex (cortex 1 site) of a Ube3a (2xTg) autism model mouse versus FVP WT littermate. Scale bars, 250 μm. (H) Colocalization of EGFP+ cells (transduced by AAV-GABA-mAGNET) with GABA immunofluorescence or mRuby2 (transduced by AAV-CamKIIα-mRuby2) in Ube3a (2xTg) mice (n = 2) and WT littermates (n = 3). Scatterplot shows individual animals (circles) and mean (horizontal bar) ± SD ns = no significance, Pearson’s chi-square test. (I) Representative confocal images of EGFP+ cortical cells transduced with AAV-GABA-mAGNET, mRuby2 fluorescence from cortical cells transduced with AAV CamKIIα mRuby2, immunofluorescence of an inhibitory (GABA) cell marker, and colocalization from a Ube3a (2xTg) mouse (bottom) and WT littermate (top). Scale bars, 35 μm. See also Figures S1and S2 and Tables S1 and S2. Cell Reports 2018 24, 294-303DOI: (10.1016/j.celrep.2018.06.049) Copyright © 2018 The Author(s) Terms and Conditions

Figure 3 Interneuron Targeting with GABA mAGNETs in the Rat Cortex (A) Confocal microscopy images showing comparison of lentivirus transduction in rat cortex (cortex 1 site). Scale bars, 250 μm. (B) Colocalization of EGFP+ cells with inhibitory and excitatory marker immune stains in rat cortex (n = 3 rats each). Scatterplot shows individual animals (circles) and mean (horizontal bar) ± SD. ∗∗∗p < 0.005, Pearson’s chi-square test. (C) Representative confocal images of EGFP+ cortical cells transduced with LV-Control, immunofluorescence of inhibitory (GABA) and excitatory (CamKIIα) cell markers, and colocalization. Scale bars, 35 μm. (D) Same as (C), for cells transduced with LV-GABA-mAGNET. (E–H) Same as (A–D), for AAV-Control and AAV-GABA-mAGNET. See also Figures S1 and S3 and Tables S1 and S2. Cell Reports 2018 24, 294-303DOI: (10.1016/j.celrep.2018.06.049) Copyright © 2018 The Author(s) Terms and Conditions

Figure 4 Simultaneous Optogenetic Manipulation of Two Neuron Subtypes In Vivo with AAV-GABA-mAGNET (A) AAV vector designs to selectively express Jaws-mRuby2 in cortical inhibitory neurons for silencing (AAV-Jaws-GABA-mAGNET), and ChR2-EGFP in cortical excitatory neurons for activation (AAV-CamKIIα-ChR2). (B) Representative confocal images of CHR2-EGFP expression, Jaws-mRuby2 expression, GABA immunostaining, and colocalization. Scale bars, 35 μm. (C) Examples of local field potential (LFP) recordings and spectrograms from a sham (non-injected, WT) mouse (Ci) and from a mAGNET (virus-injected, WT) mouse (Cii) during 40 Hz pulse train laser illumination. Both LFP trace and spectrogram were aligned to illumination onset. Open boxes above indicate the time window for calculating oscillation power and solid parts indicate illumination duration: pre-illumination (Pre), red laser illumination (R), blue laser illumination (B), and simultaneous red and blue laser illumination (R+B). (D) Normalized oscillation power during 40 Hz pulse train laser illumination across animals (sham: n = 5, mAGNET: n = 6). (E) Gamma oscillations (30–50 Hz) induced by 40 Hz pulse train laser illumination with red laser (left), blue laser (middle), or both (right) in sham and mAGNET mice (∗p < 0.05, Wilcoxon rank-sum test). Plot shows mean ± SEM. (F–H) Same as (C–E), for 200 ms pulse laser illumination. See also Table S2. Cell Reports 2018 24, 294-303DOI: (10.1016/j.celrep.2018.06.049) Copyright © 2018 The Author(s) Terms and Conditions