Digital Systems II EEC 180 Bevan M. Baas.

Slides:



Advertisements
Similar presentations
Digital System Design-II (CSEB312)
Advertisements

D-Type Flip Flops Benchmark Companies Inc PO Box
Tutorial 2 Sequential Logic. Registers A register is basically a D Flip-Flop A D Flip Flop has 3 basic ports. D, Q, and Clock.
Counters Discussion D8.3.
Synchronous Counters with SSI Gates
Lecture #24 Page 1 EE 367 – Logic Design Lecture #24 Agenda 1.State Machines Review Announcements 1.n/a.
CDA 3100 Recitation Week 11.
CDA 3100 Recitation Week 10.
State Machine Design Procedure
Registers and Counters
Table 7.1 Verilog Operators.
Registers and Counters. Register Register is built with gates, but has memory. The only type of flip-flop required in this class – the D flip-flop – Has.
Digital Circuit Review: Combinational Logic Logic operation –Need to know following two input gates: NAND, AND, OR, NOT, XOR –Need to know DeMorgan’s Theorems.
Counters Mano & Kime Sections 5-4, 5-5. Counters Ripple Counter Synchronous Binary Counters –Design with D Flip-Flops –Design with J-K Flip-Flops Counters.
Give qualifications of instructors: DAP
CS 151 Digital Systems Design Lecture 20 Sequential Circuits: Flip flops.
ENGIN112 L27: Counters November 5, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 27 Counters.
CS370 Counters. Overview °Counter: A register that goes through a prescribed series of states °Counters are important components in computers. °Counters.
CS 140L Lecture 4 Professor CK Cheng 10/22/02. 1)F-F 2)Shift register 3)Counter (Asynchronous) 4)Counter (Synchronous)
Digital Systems I EEC 180A Lecture 15 Bevan M. Baas Tuesday, November 20, 2007.
The edge triggered J-K Flip flop The J-K Flip flop is versatile and is widely used type of flip flop. The functioning of this flip flop is identical to.
ECE/CS 352 Digital System Fundamentals© T. Kaminski & C. Kime 1 ECE/CS 352 Digital Systems Fundamentals Spring 2001 Chapter 4 – Part 3 Tom Kaminski & Charles.
Asynchronous Counters with SSI Gates
Objectives: Given input logice levels, state the output of an RS NAND and RS NOR. Given a clock signal, determine the PGT and NGT. Define “Edge Triggered”
Rabie A. Ramadan Lecture 3
Digital Systems I EEC 180A Lecture 4 Bevan M. Baas.
ENG2410 Digital Design LAB #6 LAB #6 Sequential Logic Design (Flip Flops)
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Chapter 5 – Sequential Circuits Logic and Computer.
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 17 Dr. Shi Dept. of Electrical and Computer Engineering.
Flip Flops 3.1 Latches and Flip-Flops 3 ©Paul Godin Created September 2007 Last Edit Aug 2013.
Why we need adjustable delay? The v1495 mezzanine card (A395A) have a signal transmission time about 6ns. But we need all the signals go into the look.
Sequential Circuit: Analysis BIL- 223 Logic Circuit Design Ege University Department of Computer Engineering.
Counters Prepared by: Careene McCallum-Rodney. Introduction Counters uses a Toggle Flip Flops to count either UP or DOWN in binary. A toggle flip flop.
Electronics Merit Badge Class 3 1/17/2016 Electronics Merit Badge Class National Scout Jamboree 1.
Electronics Merit Badge Class 3 3/13/2016Electronics Merit Badge Class 31.
Counters and registers Eng.Maha Alqubali. Registers Registers are groups of flip-flops, where each flip- flop is capable of storing one bit of information.
Shift Register Counters
SERIAL MULTIPLIER Part 1
LAB #6 Sequential Logic Design (Flip Flops, Shift Registers)
Question 8.18 (page 397) Design a digital system that multiplies two unsigned binary numbers by the repeated addition method. For example, to multiply.
Computer Organization
EKT 221 – Counters.
EKT 221 : Digital 2 COUNTERS.
Sequential Logic Counters and Registers
FIGURE 5.1 Block diagram of sequential circuit
Sequential Circuit: Counter
Digital Design Lecture 9
FLIP FLOPS.
Quad D Flip Flop Index Circuit Error Judgment Scenario
INTRODUCTION Overview of Shift Registers
Introduction to Sequential Logic Design
EEC 180B Lecture 14 Bevan M. Baas Tuesday, May 22, 2018
Asynchronous Counters with SSI Gates
Counters and Registers
Lecture Part A Combinational Logic Design & Flip Flop
29-Nov-18 Counters Chapter 5 (Sections ).
Digital Logic & Design Dr. Waseem Ikram Lecture No. 31.
Assignment 1.
FIGURE 10.1 Rectangular‐shape graphic symbols for gates
ECE 3130 – Digital Electronics and Design
Lecture 17 Logistics Last lecture Today HW5 due on Wednesday
FIGURE 1: SERIAL ADDER BLOCK DIAGRAM
CHAPTER 4 COUNTER.
Synchronous Sequential Logic
Switching Theory and Logic Design Chapter 5:
SYEN 3330 Digital Systems Chapter 6 – Part 3 SYEN 3330 Digital Systems.
14 Digital Systems.
Lecture 17 Logistics Last lecture Today HW5 due on Wednesday
Digital Logic Design.
FLIP-FLOP. The basic memory circuit is known as Flip-flop. OR It is a bistable sequential circuit which has two stable state (set & reset) and can be.
Presentation transcript:

Digital Systems II EEC 180 Bevan M. Baas

Counter Example 3-bit counter Specification Has a reset signal input Starting at zero, it increments by 3 at 6, it wraps back to 0 Has a reset signal input When reset=1, the next counter value is 0 Uses D Flip-flops reset 6 3 B. Baas

Counter Example Using D FFs State Table Two different values of reset treated as different Next States in this example reset=0 reset=1 Present State ABC Next State ABC Next State ABC 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset 6 3 B. Baas

Counter Example Using D FFs reset=0 reset=1 Present State ABC Next State ABC Next State ABC XXX XXX Combina- tional Logic output (= state) 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset DA,B,C clk reset DA,B,C XXX output XXX reset “current” time B. Baas 6 3

Counter Example Using D FFs reset=0 reset=1 Present State ABC Next State ABC Next State ABC 000 XXX 1 Combina- tional Logic output (= state) 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset DA,B,C clk reset DA,B,C XXX 000 output XXX XXX reset “current” time B. Baas 6 3

Counter Example Using D FFs reset=0 reset=1 Present State ABC Next State ABC Next State ABC 011 000 000 Combina- tional Logic output (= state) 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset DA,B,C clk reset DA,B,C XXX 000 011 output XXX XXX 000 reset “current” time B. Baas 6 3

Counter Example Using D FFs reset=0 reset=1 Present State ABC Next State ABC Next State ABC 110 011 Combina- tional Logic output (= state) 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset DA,B,C clk reset DA,B,C XXX 000 011 110 output XXX XXX 000 011 reset “current” time B. Baas 6 3

Counter Example Using D FFs reset=0 reset=1 Present State ABC Next State ABC Next State ABC 000 110 Combina- tional Logic output (= state) 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset DA,B,C clk reset DA,B,C XXX 000 011 110 000 output XXX XXX 000 011 110 reset “current” time B. Baas 6 3

Counter Example Using D FFs reset=0 reset=1 Present State ABC Next State ABC Next State ABC 011 000 Combina- tional Logic output (= state) 000 001 010 011 100 101 110 111 011 xxx 110 000 000 reset DA,B,C clk reset DA,B,C XXX 000 011 110 000 011 output XXX XXX 000 011 110 000 reset “current” time B. Baas 6 3