Volume 12, Issue 5, Pages (August 2015)

Slides:



Advertisements
Similar presentations
Volume 82, Issue 1, Pages (April 2014)
Advertisements

Volume 13, Issue 9, Pages (December 2015)
Volume 111, Issue 2, Pages (October 2002)
Jurian Schuijers, Laurens G. van der Flier, Johan van Es, Hans Clevers 
Volume 18, Issue 7, Pages (July 2011)
Volume 19, Issue 5, Pages (May 2012)
Volume 102, Issue 6, Pages (September 2000)
An Enzyme that Regulates Ether Lipid Signaling Pathways in Cancer Annotated by Multidimensional Profiling  Kyle P. Chiang, Sherry Niessen, Alan Saghatelian,
ApoE Promotes the Proteolytic Degradation of Aβ
Endocannabinoids Control the Induction of Cerebellar LTD
RGS4 Is Required for Dopaminergic Control of Striatal LTD and Susceptibility to Parkinsonian Motor Deficits  Talia N. Lerner, Anatol C. Kreitzer  Neuron 
Irs1 Serine 307 Promotes Insulin Sensitivity in Mice
Volume 20, Issue 6, Pages (December 2014)
Volume 31, Issue 6, Pages (December 2009)
Jacqueline L. Blankman, Gabriel M. Simon, Benjamin F. Cravatt 
Volume 14, Issue 6, Pages (December 2011)
Profiling Enzyme Activities In Vivo Using Click Chemistry Methods
Volume 5, Issue 5, Pages (December 2013)
Exploring Metabolic Pathways and Regulation through Functional Chemoproteomic and Metabolomic Platforms  Daniel Medina-Cleghorn, Daniel K. Nomura  Chemistry.
Volume 24, Issue 8, Pages (August 2018)
Balthazar B Cazac, Jürgen Roes  Immunity 
Volume 6, Issue 6, Pages (March 2014)
Volume 22, Issue 7, Pages (July 2015)
Volume 23, Issue 9, Pages (May 2018)
Pertussis Toxin-sensitive Secretory Phospholipase A2 Expression and Motility in Activated Primary Human Keratinocytes  Krystyna E. Rys-Sikora, Alice P.
Amy R Mohn, Raul R Gainetdinov, Marc G Caron, Beverly H Koller  Cell 
The Retromer Supports AMPA Receptor Trafficking During LTP
Volume 1, Issue 6, Pages (June 2012)
Volume 23, Issue 3, Pages (September 2005)
Mechanism of Carbamate Inactivation of FAAH: Implications for the Design of Covalent Inhibitors and In Vivo Functional Probes for Enzymes  Jessica P.
Profiling Enzyme Activities In Vivo Using Click Chemistry Methods
Volume 18, Issue 5, Pages (January 2017)
Volume 41, Issue 1, Pages (January 2004)
Volume 24, Issue 4, Pages (April 2006)
Volume 17, Issue 10, Pages (December 2016)
Volume 9, Issue 2, Pages (August 2011)
Volume 18, Issue 11, Pages (March 2017)
Endocannabinoids Mediate Neuron-Astrocyte Communication
Volume 27, Issue 3, Pages e5 (April 2019)
Characterization of Monoacylglycerol Lipase Inhibition Reveals Differences in Central and Peripheral Endocannabinoid Metabolism  Jonathan Z. Long, Daniel.
Jae Won Chang, Daniel K. Nomura, Benjamin F. Cravatt 
Volume 22, Issue 7, Pages (July 2015)
A Major Role for Capsule-Independent Phagocytosis-Inhibitory Mechanisms in Mammalian Infection by Cryptococcus neoformans  Cheryl D. Chun, Jessica C.S.
Volume 9, Issue 5, Pages (December 2014)
Dual Dopaminergic Regulation of Corticostriatal Plasticity by Cholinergic Interneurons and Indirect Pathway Medium Spiny Neurons  Shana M. Augustin, Jessica.
Synucleins Have Multiple Effects on Presynaptic Architecture
Marta Navarrete, Alfonso Araque  Neuron 
Volume 17, Issue 6, Pages (November 2016)
Volume 51, Issue 1, Pages (July 2006)
Volume 3, Issue 3, Pages (March 2013)
Volume 17, Issue 11, Pages (November 2010)
Andrea McQuate, Elena Latorre-Esteves, Andres Barria  Cell Reports 
Dan Yu, Rongdiao Liu, Geng Yang, Qiang Zhou  Cell Reports 
Volume 12, Issue 1, Pages (July 2015)
Volume 21, Issue 1, Pages (October 2017)
Volume 135, Issue 3, Pages (October 2008)
Volume 49, Issue 3, Pages e4 (September 2018)
Volume 10, Issue 7, Pages (February 2015)
Volume 13, Issue 1, Pages (October 2015)
Mice with AS160/TBC1D4-Thr649Ala Knockin Mutation Are Glucose Intolerant with Reduced Insulin Sensitivity and Altered GLUT4 Trafficking  Shuai Chen, David.
Volume 6, Issue 4, Pages (October 2007)
Fig. 1. Generation of WNK3 knockout mice
Keiko Tanaka, George J. Augustine  Neuron 
Aaron T. Wright, Benjamin F. Cravatt  Chemistry & Biology 
Volume 45, Issue 2, Pages (January 2005)
Volume 9, Issue 5, Pages (December 2014)
Volume 66, Issue 2, Pages (April 2010)
Mechanism of Carbamate Inactivation of FAAH: Implications for the Design of Covalent Inhibitors and In Vivo Functional Probes for Enzymes  Jessica P.
Volume 71, Issue 1, Pages (July 2011)
Allosteric Regulation of NCLX by Mitochondrial Membrane Potential Links the Metabolic State and Ca2+ Signaling in Mitochondria  Marko Kostic, Tomer Katoshevski,
Presentation transcript:

Volume 12, Issue 5, Pages 798-808 (August 2015) Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action  Andreu Viader, Jacqueline L. Blankman, Peng Zhong, Xiaojie Liu, Joel E. Schlosburg, Christopher M. Joslyn, Qing-Song Liu, Aaron J. Tomarchio, Aron H. Lichtman, Dana E. Selley, Laura J. Sim-Selley, Benjamin F. Cravatt  Cell Reports  Volume 12, Issue 5, Pages 798-808 (August 2015) DOI: 10.1016/j.celrep.2015.06.075 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions

Figure 1 Brain Cell Type-Specific Deletion of MAGL Identifies Both Neurons and Astrocytes as Key Regulators of 2-AG Metabolism in the Nervous System (A) Diagram of the targeted Mgll locus in MAGLloxP mice, in which the catalytic exon 4 of this enzyme is flanked by loxP recombination sites (GHSMG sequence containing the catalytic serine nucleophile is shown). When MAGLloxP mice are crossed with mice that express Cre recombinase, exon 4 is excised to produce the null allele (MAGL−). (B) Western blot of neurons, astrocytes, and microglia derived from MAGL-TKO (T, total), MAGL-NKO (N, neuron), MAGL-AKO (A, astrocyte), or MAGL-MKO (M, microglia) mice confirms efficient and cell-type-specific depletion of MAGL in these different mouse lines. (C) 2-AG hydrolytic activities of neuron, astrocyte, and microglia membrane proteomes derived from MAGL-TKO (T), MAGL-NKO (N), MAGL-AKO (A), and MAGL-MKO (M) mice confirms cell-type-specific loss of MAGL in these different mice. n = 4–5 per cell type and genotype. Error bars represent SEM; ∗∗p < 0.01 versus MAGL+/+ samples. (D and E) SDS-PAGE readout of an activity-based protein profiling (ABPP) analysis of brain membrane proteomes from MAGL-TKO (T), MAGL-NKO (N), MAGL-AKO (A), and MAGL-MKO (M) mice using a serine-hydrolase-directed fluorophosphonate-rhodamine probe (Cravatt et al., 2008) (fluorescent gel shown in grayscale) (D). Quantification of MAGL band intensity is shown (E). n = 4–5 mice per genotype. Error bars represent SEM; ∗∗p < 0.01 versus MAGL+/+ samples. (F) 2-AG hydrolytic activities of MAGL-TKO (T), MAGL-NKO (N), MAGL-AKO (A), and MAGL-MKO (M) brain membrane proteomes. n = 4–5 mice per genotype. Error bars represent SEM; ∗∗p < 0.01 versus MAGL+/+ samples. (G and H) Brain levels of 2-AG (G) and anandamide (AEA, H) in MAGL-TKO (T), MAGL-NKO (N), MAGL-AKO (A), and MAGL-MKO (M) mice. n = 8 mice per genotype. Error bars represent SEM; ∗∗p < 0.01 versus MAGL+/+ samples. See also Figure S1. Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions

Figure 2 Astrocytic and Neuronal MAGL Play Complementary Roles in Terminating Retrograde 2-AG Signaling (A–C) Average time courses of PF-EPSCs in response to a brief depolarization in cerebellar slices prepared from MAGL-TKO (A), MAGL-NKO (B), and MAGL-AKO (C) mice and their wild-type littermates show prolonged DSE following global, neuron- or astrocyte-specific loss of MAGL. Sample traces are shown for MAGL-TKO mice. n = 14–18 cells from n = 3 mice per genotype. (D) Time constant (τ) of DSE in cerebellar slices prepared from MAGL-TKO (T), MAGL-NKO (N), and MAGL-AKO (A) mice and their wild-type littermates. n = 14–18 cells from n = 3 mice per genotype. Error bars represent SEM; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus MAGL+/+. (E–G) Average time courses of IPSCs in CA1 pyramidal neurons in response to a brief depolarization in hippocampal slices prepared from MAGL-TKO (E), MAGL-NKO (F), and MAGL-AKO (G) mice and their wild-type littermates show prolonged DSI following global, neuron- or astrocyte-specific loss of MAGL. Sample traces are shown for MAGL-TKO mice. n = 13–15 cells from n = 3 mice per genotype. (H) Time constant (τ) of DSI in hippocampal slices prepared from MAGL-TKO (T), MAGL-NKO (N), and MAGL-AKO (A) mice and their wild-type littermates. n = 13–15 cells from n = 3 mice per genotype. Error bars represent SEM; ∗p < 0.05, ∗∗p < 0.01 versus MAGL+/+. See also Figure S2. Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions

Figure 3 Astrocytic and Neuronal MAGL Maintain a Balanced eCB Tone to Protect against CB1R Desensitization (A–F) Antinociceptive and hypothermic effects of full CB1R agonist WIN55,212-2 in MAGL-disrupted mice. MAGL-TKOs (A and B), but not MAGL-NKO (C and D) or MAGL-AKOs (E and F), display significant cross-tolerance to WIN55,212-2-induced antinociception and hypothermia. n = 7–8 mice per group. Error bars represent SEM; ∗p < 0.05 and ∗∗p < 0.01 versus wild-type littermates. (G–I) CP55,940-stimulated [35S]-GTPγS binding in hippocampal homogenates from MAGL-TKO, MAGL-NKO, and MAGL-AKO mice presented as concentration-effect curves (G) and Emax (H) or EC50 (I) values determined by non-linear regression. n = 5 mice per group assayed in triplicate. Error bars represent SEM; ∗∗p < 0.01 versus MAGL+/+ samples. Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions

Figure 4 Astrocytes Hydrolyze 2-AG to Generate AA Precursor Pools for Pro-inflammatory Prostaglandin Production (A–C) 2-AG (A), AA (B), and PGDE2/D2 (C) levels in MAGL+/+ and MAGL−/− neurons and astrocytes. N, neurons; A, astrocytes.; N.D., not detectable. n = 5 per cell type and genotype. Error bars represent SEM; ∗∗p < 0.01 versus corresponding MAGL+/+ cells. (D–F) Brain levels of 2-AG, AA, PGE2, and PGD2 in MAGL-TKO (D), MAGL-NKO (E), and MAGL-AKO (F) mice following administration of vehicle or LPS (20 mg/kg intraperitoneally, 6 hr). n = 6–8 mice per genotype and treatment. Error bars represent SEM; ∗p < 0.05 and ∗∗p < 0.01 versus corresponding MAGL+/+ vehicle treated; #p < 0.05 and ##p < 0.01 versus MAGL−/− vehicle treated; &p < 0.05 and &&p < 0.01 versus MAGL+/+ LPS treated. See also Figures S3 and S4. Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions

Figure 5 Transcellular Shuttling of 2-AG and AA between Neurons and Astrocytes (A and B) Intracellular (A) and media (B) 2-AG and AA levels from MAGL+/+ and MAGL−/− neurons cultured alone (−) or in the presence of astrocytes (+) in transwell co-culture dishes. n = 5 per genotype. Error bars represent SEM; ∗∗p < 0.01 versus MAGL+/+. ##p < 0.01 versus MAGL−/− neurons cultured without astrocytes. (C and D) Intracellular endogenous (gray bars) and d8-labeled (black bars) 2-AG and AA levels from MAGL+/+ and MAGL−/− neurons and MAGL+/+ astrocytes co-cultured together for 36 hr following direct labeling of only one of the two cell types with AA-d8. AA-d8 is readily incorporated into intracellular lipid pools of both neurons and astrocytes (C) and is transferred to co-cultured cells that have not themselves directly received AA-d8 (D). n = 5 per genotype. Error bars represent SEM; ∗p < 0.05 and ∗∗p < 0.01 versus corresponding MAGL+/+ cells. (E) Endogenous and d8-labeled 2-AG and AA levels in media from MAGL+/+ and MAGL−/− neurons and MAGL+/+ astrocytes co-cultured together for 36 hr following direct AA-d8 labeling of only one of the two cell types. n = 5 per genotype. Error bars represent SEM; ∗∗p < 0.01 versus corresponding MAGL+/+. ##p < 0.01 versus labeled astrocytes. Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions

Figure 6 Distributed Oversight of 2-AG Metabolism and Function in Neurons and Astrocytes Proposed model of astrocytic-neuronal transcellular shuttling and metabolism of 2-AG and AA. PIP2, phosphatidylinositol 4,5-biphosphate; PLC, phospholipase C; DAG, diacylglycerol; DAGLα, diacylglycerol lipase alpha; COX, cyclooxygenase. Cell Reports 2015 12, 798-808DOI: (10.1016/j.celrep.2015.06.075) Copyright © 2015 The Authors Terms and Conditions