Collective Dynamics of Nanoscale Magnets

Slides:



Advertisements
Similar presentations
Y.A.Pusep Institute of Physics of São Carlos, University of São Paulo Collaborators: Experiment – A.D.Rodrigues, UFSCar. Theory - S.S.Sokolov, B.Verkin.
Advertisements

X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
Physics “Advanced Electronic Structure” Lecture 7.2. Calculations of Magnetic Interactions Contents: 1.Non-collinear SDFT. 2.Applications to Magnetic.
1 Modeling of the Light Scattering by Dust Particle Plasma near the Moon Surface G.V.Belokopytov, A.V.Zhuravlev M.V.Lomonosov Moscow State University,
Montserrat García del Muro, Miroslavna Kovylina, Xavier Batlle and
U N C L A S S I F I E D Operated by the Los Alamos National Security, LLC for the DOE/NNSA Suppression of Spin Diffusion: Modeling and Simulations Gennady.
Instabilities of a relativistic electron beam in a plasma A Review Talk Antoine Bret Universidad Castilla la Mancha – Ciudad Real – Spain KINETIC MODELING.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Monte Carlo Simulation of Ising Model and Phase Transition Studies
1 Reunion SOS nanotube12 13 octobre 2011 H. Okuno, J. Dijon, E. De Vito, E. Quesnel CEA Grenoble Liten-DTNM SOS nanotubes octobre 2011.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Increased surface area on nanoparticles
Monte Carlo study of small deposited clusters from first principles L. Balogh, L. Udvardi, L. Szunyogh Department of Theoretical Physics, Budapest University.
Thin layers (2D) of nanoparticles are formed by evaporating dispersions of nanoparticles on a solid substrate Three-dimensional assemblies are prepared.
Study of spin dynamics in ferrite-based MNPs
Quantum Spin Glasses & Spin Liquids.  QUANTUM RELAXATION Ising Magnet in a Transverse Magnetic Field (1) Aging in the Spin Glass (2) Erasing Memories.
Some experimental approaches to study the aging phenomena in spin glasses Tetsuya Sato Keio University Yokohama, Japan.
Thermodynamics and dynamics of systems with long range interactions David Mukamel S. Ruffo, J. Barre, A. Campa, A. Giansanti, N. Schreiber, P. de Buyl,
Critical Phenomena in Random and Complex Systems Capri September 9-12, 2014 Spin Glass Dynamics at the Mesoscale Samaresh Guchhait* and Raymond L. Orbach**
The Story of Giant Magnetoresistance (GMR)
1 Evidence for a Reorientation Transition in the Phase Behaviour of a Two-Dimensional Dipolar Antiferromagnet By Abdel-Rahman M. Abu-Labdeh An-Najah National.
Magnetization dynamics
Magnetic Nanoclusters
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis,
  Satyendra Prakash Pal DEPARTMENT OF PHYSICAL SCIENCES
Xiaozhong Zhang, Xinyu Tan, Lihua Wu, Xin Zhang, Xili Gao, Caihua Wan National Center for Electron Microscopy (Beijing) Laboratory of Advanced Materials.
Monte-Carlo Simulations of Thermal Reversal In Granular Planer Media Monte-Carlo Simulations of Thermal Reversal In Granular Planer Media M. El-Hilo Physics.
INFSO-RI Enabling Grids for E-sciencE Workflows in Fusion applications José Luis Vázquez-Poletti Universidad.
Order and disorder in dilute dipolar magnets
Experimental investigation of dynamic Photothermal Effect
13. Extended Ensemble Methods. Slow Dynamics at First- Order Phase Transition At first-order phase transition, the longest time scale is controlled by.
NANOPARTICLES Their application in probing Glass Transition Temperature of Polymers. By RATAN KISHORE PUTLA Mechanical & Aerospace Engineering Oklahoma.
Electronic Structure and Chemical Reactivity
Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and.
Monte Carlo methods applied to magnetic nanoclusters L. Balogh, K. M. Lebecki, B. Lazarovits, L. Udvardi, L. Szunyogh, U. Nowak Uppsala, 8 February 2010.
John Drozd Colin Denniston Simulations of Collision Times and Stress In Gravity Driven Granular Flow bottom sieve particles at bottom go to top reflecting.
SPIN EXCITATIONS IN La 2 CuO 4 : CONSISTENT DESCRIPTION BY INCLUSION OF RING EXCHANGE A.A.Katanin a,b and A.P.Kampf a a Institut für Physik, Universität.
Effects of Arrays arrangements in nano-patterned thin film media
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Computational Physics (Lecture 10) PHY4370. Simulation Details To simulate Ising models First step is to choose a lattice. For example, we can us SC,
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Miral Shah Course: Thermodynamics and kinetics of confined fluids
Non-equilibrium dynamics in superspin glass systems
Re-entrant antiferromagnetism in the exchange-coupled IrMn/NiFe system
Mihai Oane1 , Rareş Victor Medianu1, Ovidiu Păcală2
Computational Physics (Lecture 10)
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Tim Drews, Dan Finkenstadt, Xuemin Gu
Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional (Cinvestav IPN) Palladium Nanoparticles Formation in Si Substrates from.
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Phase Diagrams for Surface Alloys
Didier Hérisson, Michael Östh and Per Nordblad Uppsala University
Experimental investigation of Superspin glass dynamics
Granular Materials: A window to studying the Transition from a non-Newtonian Granular Fluid To A "Glassy" system: aka "The fluid-glass transition for hard.
Zhejiang Normal University
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Research Co-ordination Meeting of the IAEA CRP on “Elements of power
Slow Dynamics in Mesoscopic Magnets and in Random Magnets
Chap 23 Optical properties of metals and inelastic scattering
Rashba splitting of graphene on Ni, Au, or Ag(111) substrates
IC AND NEMS/MEMS PROCESSES
Properties of Nano Materials
Sang-Pil Kim and Kwang-Ryeol Lee Computational Science Center
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Materials Computation Center, University of Illinois
2D Ising model Monte-Carlo (Metropolis) method.
Simulation Frequency(Hz)
Ab initio calculation of magnetic exchange parameters
Presentation transcript:

Collective Dynamics of Nanoscale Magnets Per Nordblad, Uppsala University, Sweden

Collaborators Petra Jönsson, Peter Svedlindh, ............... ....,Uppsala Mikkel Fought-Hansen; Denmark Sarbeswar Sahoo; Germany Maxim Odnoblyudov; Russia Jose Angel de Torro Sánches; Spain

OUTLINE: Particular magnetic media Isolated particle systems Ferrofluids Mechanially alloyed systems Discontinuous metal insulator multilayers Ni-particles Isolated particle systems Monodipersed particle size distribution Polydispersed particle size distribution Interacting particle systems – collective dynamics Relaxation times and relaxation function Non-equilibrium dynamics Dimensionality Conclusions

Monodipersed particles Fe(C) particles of size 5 nm

Monodipersed amorphous Ni-particles of size 2 nm PLASMA MICRODROPS LASER BEAM SUBSTRATE TARGET DEPOSITED NANOPARTICLES

Discontinuous Co-layers

Discontinuous

Relaxation times 0=10-10 s Tc=40 K

Dipolar interaction - Ferrofluids Particle size Size distribution Interaction strength Isolated particles Interacting particles

MC-simulations of a mono-dispersed particle system Ms = 4.2 105 A/m K = 1.6 104 J/m3 r = 3.5 nm J.O. Andersson et al. Phys.Rev. B 56, 13983 (1997)

Time dependence from MC T=20 K

Non-inteacting polydispersed -Fe2O3 particles c  0.03% rav  3.5 nm cf Monte Carlo monodispersed

Broadening of the Relaxation time spectrum

-Fe2O3-particles of size 70 nm cf. MC-simulations from Andersson et al T. Jonsson et al. Phys. Rev. Lett. 75, 4138 (1995)

Aging experiment Thermal procedure in simple aging experiments on glassy systems.

ISOTHERMAL AGING ZFC Magnetization after different wait times Isothermal Relaxation of c”

Influence of dipolar interaction on the relaxation rate c=17 and 0.03 %, T=20 and 35 K MC, T=20 K

Fe(C) ’monodispersed’ particles Properties: d = 5.3±0.3 nm c = 0.06, 5 and 17% K = 0.9 105 J/m3 Ms = 1.0 106 A/m

Frequency dependence ac-susceptibility Fe(C) f = 0.01 - .....9100 Hz ZFC: t = 10 – 104 s f = 0.017 – 170 Hz

Model Systems Ag(Mn) Heisenberg Fe0.5Mn0.5TiO3 ISING

Critical slowing down The slowing down of the relaxation times with decreasing temperature can for the two dense samples be described by critical slowing down. The dilute sample follows an Arrhenius law. Parameters for the critical slowing down: 17%: z  10, Tg  50 K, 0  2 10-8 s 5%: z  11, Tg  35 K, 0  2 10-5 s

The Relaxation rate FeC particles cf MC-simulations

Discontinuous layers W. Kleemann et al. Phys. Rev. B 63, 134423 (2001)

Discontinuous Co-layers

Continuous H=1mT H (T)

Particles in metallic matrices

Model Systems Ag(Mn) Heisenberg Fe0.5Mn0.5TiO3 ISING

Memory in an FeAgW mechanically alloyed system

Dimensionality: 3D or 2D Myron B Salamon

Conclusions Interaction in nanoparticle systems introduce: Collective dynamics Spin glass relaxation Re-inforcement of a frozen in spin (magnetic moment) structure.