Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
Figure 4 PET imaging in experimental pancreatic cancer
Advertisements

Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Low-grade inflammation in FGID
Figure 4 The gut microbiota directly influences T-cell differentiation
Figure 5 Schematic illustration of different clinical trial designs
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Injection of mesenchymal stem cells in perianal fistulas
Figure 5 Lipid droplet consumption
Nat. Rev. Clin. Oncol. doi: /nrclinonc
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Schematic outlining the results of Buffington et al.
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Oncogenic KRAS and inflammation
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 1 Median coverage and distribution by
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Nat. Rev. Clin. Oncol. doi: /nrclinonc
Figure 2 Key features of gastric cancer subtypes according to The Cancer Genome Atlas (TCGA) Figure 2 | Key features of gastric cancer subtypes according.
Figure 3 Lipid droplet formation and expansion
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Brain–gut axis Brain–gut axis. Schematic of the brain–gut axis, including inputs from the gut microbiota, the ENS, the immune system and the external.
Figure 3 Optical coherence tomography images of specialized intestinal
Figure 3 Examples of gene expression heterogeneity
Figure 2 Frequency and overlap of alterations
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Enhanced imaging techniques and autofluorescence endoscopy for Barrett oesophagus Figure 2 | Enhanced imaging techniques and autofluorescence.
Figure 1 The spread of colorectal cancer metastases
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.33 Figure 2 Two hypothetical scenarios for the origin of molecular subtypes Figure 2 | Two hypothetical scenarios for the origin of molecular subtypes. a | In this theoretical scenario, cancers in all the gastrointestinal organs start out as 'canonical' or 'ground state' epithelial subtype tumours. As these tumours progress and accumulate 'decisive events' that directly or indirectly influence tumour biology, they deviate from the epithelial state into divergent subtypes that can be classified as distinct entities. The shared original ground state can be organ-specific, but the resulting deviations from this state can be highly similar across tumours in the gastrointestinal organs and can be identified as analogous entities. b | In this theoretical scenario, tumours arise and progress from a fixed molecular subtype. Subtype-specific driver mutations and nongenetic factors (intrinsic or extrinsic) act early in the establishment of these cancers as the decisive events and there is no ground state to deviate from. The resulting phenotypes captured in a molecular profile can be identified across organs, with the commonality in early tumour-driving events determining their similarity. Bijlsma, M. F. et al. (2017) Molecular subtypes in cancers of the gastrointestinal tract Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.33