In order to solve this equation, the first item to consider is: “How many solutions are there?” Let’s look at some equations and consider the number of.

Slides:



Advertisements
Similar presentations
The Rational Zero Theorem
Advertisements

Lesson 3.4 – Zeros of Polynomial Functions Rational Zero Theorem
Complex Numbers Objectives:
Chapter 8 Exploring Polynomial Functions
Roots & Zeros of Polynomials
The Fundamental Theorem of Algebra The Fundamental Theorem of Algebra
Copyright © Cengage Learning. All rights reserved.
Section 6.6 Finding Rational Zeros. Rational Zero Theorem Synthetic & Long Division Using Technology to Approximate Zeros Today you will look at finding.
Splash Screen.
Splash Screen.
Rational Root Theorem.
Zeros of Polynomial Functions
Splash Screen.
Multiplying, Dividing, and Simplifying Radicals
2.5 Zeros of Polynomial Functions
Zeros of Polynomial Functions
LIAL HORNSBY SCHNEIDER
Pre-Calculus For our Polynomial Function: The Factors are:(x + 5) & (x - 3) The Roots/Solutions are:x = -5 and 3 The Zeros are at:(-5, 0) and (3, 0)
1 5.6 Complex Zeros; Fundamental Theorem of Algebra In this section, we will study the following topics: Conjugate Pairs Theorem Finding a polynomial function.
The Real Zeros of a Polynomial Function
Warm-up Find all the solutions over the complex numbers for this polynomial: f(x) = x4 – 2x3 + 5x2 – 8x + 4.
Rational Root Theorem. Finding Zeros of a Polynomial Function Use the Rational Zero Theorem to find all possible rational zeros. Use Synthetic Division.
Dividing Polynomials.
The Rational Zero Theorem
The Fundamental Theorem of Algebra And Zeros of Polynomials
Copyright © Cengage Learning. All rights reserved.
The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all.
Bell Ringer 1. What is the Rational Root Theorem (search your notebook…Unit 2). 2. What is the Fundamental Theorem of Algebra (search your notebook…Unit.
Zeros of Polynomial Functions Section 2.5 Page 312.
4-5, 4-6 Factor and Remainder Theorems r is an x intercept of the graph of the function If r is a real number that is a zero of a function then x = r.
Precalculus Complex Zeros V. J. Motto. Introduction We have already seen that an nth-degree polynomial can have at most n real zeros. In the complex number.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Real Zeros of a Polynomial Function Objectives: Solve Polynomial Equations. Apply Descartes Rule Find a polynomial Equation given the zeros.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
6.6 The Fundamental Theorem of Algebra
Key Concept 1. Example 1 Leading Coefficient Equal to 1 A. List all possible rational zeros of f (x) = x 3 – 3x 2 – 2x + 4. Then determine which, if any,
1 C ollege A lgebra polynomial and Rational Functions (Chapter3) L:16 1 University of Palestine IT-College.
Ch 2.5: The Fundamental Theorem of Algebra
Warm up Write the quadratic f(x) in vertex form..
Lesson 2.5, page 312 Zeros of Polynomial Functions Objective: To find a polynomial with specified zeros, rational zeros, and other zeros, and to use Descartes’
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
3.4 Zeros of Polynomial Functions. The Fundamental Theorem of Algebra If f(x) is a polynomial of degree n, where n>0, then f has at least one zero in.
Zeros of Polynomials 2.5.
Copyright © 2009 Pearson Education, Inc. CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions.
Section 4.4 Theorems about Zeros of Polynomial Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Copyright © 2011 Pearson Education, Inc. The Theory of Equations Section 3.3 Polynomial and Rational Functions.
Introduction Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial.
The Rational Zero Theorem The Rational Zero Theorem gives a list of possible rational zeros of a polynomial function. Equivalently, the theorem gives all.
Objectives: 1. Use the factor theorem. 2. Factor a polynomial completely.
Zero of Polynomial Functions Factor Theorem Rational Zeros Theorem Number of Zeros Conjugate Zeros Theorem Finding Zeros of a Polynomial Function.
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 3 Polynomial and Rational Functions.
Chapter 3 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Zeros of Polynomial Functions.
Real Zeros of Polynomial Functions
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
3.3 Dividing Polynomials.
Theorems about Roots of Polynomial Equations and
2.5 Zeros of Polynomial Functions
Bell Ringer 1. What is the Rational Root Theorem
Theorems about Roots of Polynomial Equations and
Zeros of Polynomial Functions
The Rational Zero Theorem
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Chapter 7.5 Roots and Zeros Standard & Honors
The Fundamental Theorem of Algebra And Zeros of Polynomials
The Rational Zero Theorem
Warm-up: Find f(2) for HW: pg. 248(2 – 14even, 18, 20, 26, 31, 46, 48)
5.6 Complex Zeros; Fundamental Theorem of Algebra
Presentation transcript:

In order to solve this equation, the first item to consider is: “How many solutions are there?” Let’s look at some equations and consider the number of solutions. Equation Solution set Number of solutions Notice, except for the last equation, the number of solutions is equivalent to the degree of the polynomial. In the last row, the number of solutions is not the same as the degree. The solution 5 was actually a solution twice. We would then say the equation has a solution of {5} with a multiplicity of 2. Number of solutions of an equation A polynomial of degree n has n solutions, where any solution of multiplicity p is counted p times. The solution set to the equation is {–2, 5}. We could also say that the equation has a solution of –2 with a multiplicity of 3 and a solution of 5 with a multiplicity of 2.

Finding Rational Solutions The previous section contained factoring polynomials of degree 3 or more. This section concentrates on techniques for solving polynomials of degree 3 or more. In the previous section, one factor was given. After showing the binomial x – c was a factor, the complete factorization could be obtained by factoring the quotient. In this section no factors will be given. So there will be a little trial and error. Theorems, properties and rules will be used to create a procedure for solving these types of equations. The following theorem will give a set of potential rational solutions of polynomial equations. An example of how this theorem is used is on the following slide. Rational Root Theorem Consider the polynomial equation

Example 1. Use the rational root theorem to give all possible rational roots for the equation (do not solve): Find all factors of c and d The possible solutions are the combinations of Answer: Use the rational root theorem to give all possible rational roots for the equation (do not solve): Your Turn Problem #1 Notice the number of possible solutions that exist. There are 16 possible solutions. Since the degree of the polynomial is 4, at least 12 of these will not be a solution. Recall in the previous section, a polynomial of degree 3 or 4 was to be factored. To solve these equations, the first step is to factor and then set each factor equal to zero and solve. However in the previous section, one solution was given. We were then able to use synthetic division and complete the factorization. In this section, no solution will be given. We need to find one from the list of possible solutions. In the last Your Turn Problem, there were 16 possibilities. It is possible only two will be solutions. Finding the first solution is the most time consuming. Usually once one solution is found, the others will be easier to find.

Example 2. Use the rational root theorem and the factor theorem to help solve the equation: Solution: Write a list of all possible solutions: Since we have a degree 3 polynomial, once one solution is found, the other two can be found by factoring or by using the quadratic formula. Find the first root (solution) using the possible solutions and synthetic division. This may take a few tries. Once one root is found, the polynomial can be written in factored form. Now complete the factorization and find all 3 roots. Your Turn Problem #2 Use the rational root theorem and the factor theorem to help solve the equation:

Example 3. Use the rational root theorem and the factor theorem to help solve the equation: Solution: Write a list of all possible solutions: Hopefully, one or more of the integers is a root. If not, it will be necessary to check if one of the fractions is a root. Once one root is found, the polynomial can be written in factored form. Now complete the factorization and find all 3 roots. Your Turn Problem #3 Use the rational root theorem and the factor theorem to help solve the equation:

Once one solution is found in a 3rd degree polynomial, a trinomial is left to be factored to obtain the last two solutions. If the trinomial can not be factored, then quadratic equation must be used. Solution: List all possible solutions: Once one root is found, the polynomial can be written in factored form. Since the trinomial can not be factored, use the quadratic equation to solve. Your Turn Problem #4 Use the rational root theorem and the factor theorem to help solve the equation:

Nonreal complex solutions of polynomial equations with real coefficients, if they exist, must occur in conjugate pairs. Usually we obtain complex number solutions when we use the quadratic formula or the square root property. If the number under the square root is negative, this will give a complex number. Since there is a  in front of the radical, there will be two complex number solutions. Solution: List all possible solutions: Use the square root property to solve. Your Turn Problem #5 Use the rational root theorem and the factor theorem to help solve the equation:

As you have noticed, solving these polynomial equations can be quite time consuming. You should try and convince yourself that you are having a good time so it doesn’t seem so bad. Also, a couple of rules will be introduced which can make this process not as difficult. Descartes’ Rule of Signs If P(x) is a polynomial with real coefficients: The number of positive roots of P(x)=0 is either equal to the number of variations in sign of P(x) or less than that by an even number. The number of negative roots of P(x)=0 is either equal to the number of variations in sign of P(–x) or less than that by an even number. “Less than that by an even number”: complex solutions occur in conjugate pairs. We then always subtract by multiples two because the solutions may be complex. For example; If you get 2 changes for P(x), then you answer: 2 or 0 positive solutions. If you get 3 changes for P(x), then you answer: 3 or 1 positive solutions. If you get 4 changes for P(x), then you answer: 4 or 2 or 0 positive solutions. If you get 5 changes for P(x), then you answer: 5 or 3 or 1 positive solutions. If you get 1 changes for P(x), then you answer: 1 positive solution.

Example 6. Use Descartes’ Rule of Signs to list the possibilities for the number of positive and negative solutions of the equation (do not solve): To find the number of positive solutions, count the sign changes of P(x). There are no variations in sign of P(x), therefore there are no positive solutions. To find the number of negative solutions, replace x with –x and simplify. Then count the sign changes of P(–x). There are 3 variations in sign, therefore there are 3 or 1 negative solutions. Answer: No positive solutions, 3 or 1 negative solutions. Your Turn Problem #6 Use Descartes’ Rule of Signs to help list the possibilities for the nature of the solutions of the equation (do not solve): Answer: There are 3 or 1 positive solutions. Zero negative solutions

Example 7. Use Descartes’ Rule of Signs to help list the possibilities for the nature of the solutions of the equation (do not solve): Count the number in variations of sign of the polynomial P(x). There are 3 variations in sign, therefore there are 3 or 1 positive solutions. To find the number of negative solutions, replace x with –x and simplify. Then count the sign changes of P(–x). There is 1 variation in sign, therefore there is 1 negative solution. Answer: 3 or 1 positive solutions, 1 negative solutions. Your Turn Problem #7 Use Descartes’ Rule of Signs to help list the possibilities for the nature of the solutions of the equation (do not solve): Answer: 3 or 1 positive solutions, 1 negative solutions.

Example 8. Use Descartes’ Rule of Signs to help list the possibilities for the nature of the solutions of the equation (do not solve): Count the number in variations of sign of the polynomial P(x). There are 3 variations in sign, therefore there are 3 or 1 positive solutions. To find the number of negative solutions, replace x with –x and simplify. Then count the sign changes of P(–x). There are 2 variations in sign, therefore there are 2 or 0 negative solutions. Answer: 3 or 1 positive solutions, 2 or 0 negative solutions. Your Turn Problem #8 Use Descartes’ Rule of Signs to help list the possibilities for the nature of the solutions of the equation (do not solve): Answer: 2 or 0 positive solutions, 3 or 1 negative solutions.

This rule only gives us information about the possible solutions This rule only gives us information about the possible solutions. Let’s see how this information can make the process easier. Solution: Descartes’ Rule tells us that there are 3 or 1 positive solutions and no negative solutions (verify). This just cut or list from 8 possible solutions to 4 possible solutions. Therefore do not try any negative numbers using synthetic division. Using the quadratic formula to solve. Your Turn Problem #9 Hint: Should you try positive numbers?

All of the previous examples and your turn problems contained 3rd degree polynomials. Once one solution is found, the other two can be found by factoring or by using the quadratic formula. If the equation to be solved is a 4th degree polynomial, once one solution is found, the factor obtained will be a 3rd degree polynomial (often called the depressed polynomial). Since we still have a 3rd degree polynomial, we still need to find another solution to obtain a depressed polynomial of degree 2. So if we have a 4th degree polynomial, we will need to find 2 solutions by synthetic division to obtain a depressed polynomial of degree 2. If we have a 5th degree polynomial, 3 solutions will need to found using synthetic division to obtain a depressed polynomial of degree 2. In general, the number of solutions needed to found using synthetic division will always be two less than the degree of the equation to solved. The next example will show this concept. Next Slide

Solution: Find one solution using synthetic division. Once one solution is found, find another solution using synthetic division. However, when finding the second, use the depressed polynomial found by finding the first solution. (Hint start with c = -1) Once one root is found, the polynomial can be written in factored form. However, the depressed polynomial is of degree 3. Therefore we need to find a second solution to obtain a depressed polynomial of degree 2. (Hint: use c= 2) Now we can write the equation in factored form and obtain the 4 solutions. Your Turn Problem #10 The End. B.R. 2-26-07