MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts

Slides:



Advertisements
Similar presentations
Primal-dual Algorithm for Convex Markov Random Fields Vladimir Kolmogorov University College London GDR (Optimisation Discrète, Graph Cuts et Analyse d'Images)
Advertisements

Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London Tutorial at GDR (Optimisation Discrète, Graph Cuts.
O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.
Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman.
Linear Time Methods for Propagating Beliefs Min Convolution, Distance Transforms and Box Sums Daniel Huttenlocher Computer Science Department December,
Introduction to Markov Random Fields and Graph Cuts Simon Prince
ICCV 2007 tutorial Part III Message-passing algorithms for energy minimization Vladimir Kolmogorov University College London.
An Analysis of Convex Relaxations (PART I) Minimizing Higher Order Energy Functions (PART 2) Philip Torr Work in collaboration with: Pushmeet Kohli, Srikumar.
Probabilistic Inference Lecture 1
Last Time Pinhole camera model, projection
P 3 & Beyond Solving Energies with Higher Order Cliques Pushmeet Kohli Pawan Kumar Philip H. S. Torr Oxford Brookes University CVPR 2007.
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr.
2010/5/171 Overview of graph cuts. 2010/5/172 Outline Introduction S-t Graph cuts Extension to multi-label problems Compare simulated annealing and alpha-
Efficiently Solving Convex Relaxations M. Pawan Kumar University of Oxford for MAP Estimation Philip Torr Oxford Brookes University.
The plan for today Camera matrix
Recovering Articulated Object Models from 3D Range Data Dragomir Anguelov Daphne Koller Hoi-Cheung Pang Praveen Srinivasan Sebastian Thrun Computer Science.
Belief Propagation Kai Ju Liu March 9, Statistical Problems Medicine Finance Internet Computer vision.
Relaxations and Moves for MAP Estimation in MRFs M. Pawan Kumar STANFORDSTANFORD Vladimir KolmogorovPhilip TorrDaphne Koller.
Hierarchical Graph Cuts for Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller.
Measuring Uncertainty in Graph Cut Solutions Pushmeet Kohli Philip H.S. Torr Department of Computing Oxford Brookes University.
Computer vision: models, learning and inference
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil.
Graph-based consensus clustering for class discovery from gene expression data Zhiwen Yum, Hau-San Wong and Hongqiang Wang Bioinformatics, 2007.
Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar Slides available online
MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 03/31/15.
MRFs and Segmentation with Graph Cuts Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 02/24/10.
CS774. Markov Random Field : Theory and Application Lecture 13 Kyomin Jung KAIST Oct
Planar Cycle Covering Graphs for inference in MRFS The Typhon Algorithm A New Variational Approach to Ground State Computation in Binary Planar Markov.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris Joint work with Phil Torr, Daphne Koller.
Rounding-based Moves for Metric Labeling M. Pawan Kumar Center for Visual Computing Ecole Centrale Paris.
Learning a Small Mixture of Trees M. Pawan Kumar Daphne Koller Aim: To efficiently learn a.
Discrete Optimization Lecture 2 – Part I M. Pawan Kumar Slides available online
Discrete Optimization Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Fast Parallel and Adaptive Updates for Dual-Decomposition Solvers Ozgur Sumer, U. Chicago Umut Acar, MPI-SWS Alexander Ihler, UC Irvine Ramgopal Mettu,
Probabilistic Inference Lecture 3 M. Pawan Kumar Slides available online
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London.
Discrete Optimization in Computer Vision M. Pawan Kumar Slides will be available online
Discrete Optimization Lecture 3 – Part 1 M. Pawan Kumar Slides available online
1 Markov Random Fields with Efficient Approximations Yuri Boykov, Olga Veksler, Ramin Zabih Computer Science Department CORNELL UNIVERSITY.
Probabilistic Inference Lecture 5 M. Pawan Kumar Slides available online
CS774. Markov Random Field : Theory and Application Lecture 02
Daphne Koller Message Passing Belief Propagation Algorithm Probabilistic Graphical Models Inference.
Efficient Discriminative Learning of Parts-based Models M. Pawan Kumar Andrew Zisserman Philip Torr
Approximate Inference: Decomposition Methods with Applications to Computer Vision Kyomin Jung ( KAIST ) Joint work with Pushmeet Kohli (Microsoft Research)
Tractable Higher Order Models in Computer Vision (Part II) Slides from Carsten Rother, Sebastian Nowozin, Pusohmeet Khli Microsoft Research Cambridge Presented.
Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online
A Dynamic Conditional Random Field Model for Object Segmentation in Image Sequences Duke University Machine Learning Group Presented by Qiuhua Liu March.
Inference for Learning Belief Propagation. So far... Exact methods for submodular energies Approximations for non-submodular energies Move-making ( N_Variables.
Probabilistic Inference Lecture 2 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 1 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 4 – Part 1 M. Pawan Kumar
A global approach Finding correspondence between a pair of epipolar lines for all pixels simultaneously Local method: no guarantee we will have one to.
Efficient Belief Propagation for Image Restoration Qi Zhao Mar.22,2006.
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts M. Pawan Kumar Daphne Koller Aim: To obtain accurate, efficient maximum a posteriori (MAP)
Markov Random Fields in Vision
Rounding-based Moves for Metric Labeling M. Pawan Kumar École Centrale Paris INRIA Saclay, Île-de-France.
Energy minimization Another global approach to improve quality of correspondences Assumption: disparities vary (mostly) smoothly Minimize energy function:
Introduction of BP & TRW-S
Semi-Supervised Clustering
Approximating Graphs by Trees Marcin Bieńkowski University of Wrocław
Learning a Region-based Scene Segmentation Model
Markov Random Fields with Efficient Approximations
Geometry 3: Stereo Reconstruction
Efficiently Selecting Regions for Scene Understanding
Discrete Inference and Learning
An Analysis of Convex Relaxations for MAP Estimation
Discrete Optimization Methods Basic overview of graph cuts
Graphical Models and Learning
Expectation-Maximization & Belief Propagation
Presentation transcript:

MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts M. Pawan Kumar Daphne Koller MAP Estimation b(k) Semi-Metric Potentials Bounds Aim: To obtain accurate, efficient maximum a posteriori (MAP) estimation for Markov random fields (MRF) with semi-metric pairwise potentials lk a(i) ab(i,k) = wab d(i,k) For =1 (Metric) li ab(i,k) d(i,i) = 0, d(i,j) = d(j,i) > 0 Linear Program: O(log H) va vb d(i,j) - d(j,k) ≤  d(i,k) Graph Cuts: 2 dmax/dmin minf Q(f) Variables V, Labels L f : {a,b, …} {1, …, H} Our Method: O(log H) Q(f) = ∑ a(f(a)) + ∑ ab(f(a),f(b)) f(a)-f(b) f(a)-f(b) r-HST Metrics r-HST Metric Labeling Efficient Divide-and-Conquer Approach Combine fi using -Expansion A A Initialize f0 = f1 At each iteration Choose an fi ft(a) = ft-1(a) OR ft(a) = fi(a) B B C C l1 l2 l3 l4 Optimal move using graph cuts l1 l2 l3 l4 l5 l6 Distance dT  path length f1 = minf Q(f) f2 = minf Q(f) f3 = minf Q(f) Repeat B ≤ A/r C ≤ A/r f(a)  {1,2} f(a)  {3,4} f(a)  {5,6} Overview Analysis Bound of 1 for unary potentials, 2r/(r-1) for pairwise potentials Mathematical Induction Unary potential bound follows from -Expansion d  1dT1 + 2dT2 + …. A A minf Q(f;dT1) fT1 minf Q(f;dT2) fT2 . B B C C . va vb va vb va vb l1 l2 l3 l4 Combine fT1, fT2 …. Bound = 1 Bound = 1 Bound = 2dmax/dmin = 2r/(r-1) Use -Expansion True for children Learning a Mixture of rHSTs (Hierarchical Clustering) Refinement (Hard EM) ∑tdTt(i,k) min maxi,k d(i,k) l1 l3 l4 Initial labeling f Cluster Cj Root 1 cluster Derandomization Boosting-style descent yik: contribution of (i,k) to current labeling Choose random π yik = Residual For li in cluster Cj Find first lk in π s.t. d(i,k) ≤ T min ∑yik dT(i,k) l2 l3 l1 l4 Permutation π yik = ∑wab[f(a)=i][f(b)=k] Update yik. Repeat. min ∑yik dT(i,k) l3 Bounds Decrease T by r For =1, O(log H) New labeling f’ Cluster Cj+1 Repeat l4 l1 For 1, O((log H)2) Approximate E and M Fakcharoenphol et al., 2000 Synthetic Experiments 100 randomly generated 4-connected grid graphs of size 100x100 Q Exp Swap TRW BP RSwp RExp Our +EM T-L1 48645 48721 47506 50942 48045 47998 47850 47823 T-L2 52094 51938 51318 60269 51842 51641 51587 51413 rHST 50221 51055 48132 52841 - 48146 Met 48112 48487 47355 48136 47538 47382 SMet 47613 47579 46612 47402 46651 46638 Time Exp Swap TRW BP RSwp RExp Our +EM T-L1 0.4 0.6 104.3 15.8 2.0 5.8 10.2 25.7 T-L2 0.9 179.0 45.6 10.7 30.7 12.8 64.1 rHST 0.3 0.5 713.7 150.4 - 1.9 5.0 Met 703.8 129.7 10.6 32.7 SMet 70.9.4 141.8 12.2 57.5 Image Denoising Clean up an image with noise and missing data Exp TRW BP Our + EM Q 86163 73383 526969 81820 Time 26.1 529.6 115.8 294.7 465.6 Exp TRW BP Our + EM Q 75641 68226 105845 72828 72332 Time 5.1 174.3 32.9 70.6 204.5 Stereo Reconstruction Find correspondence between two epipolar corrected images of a scene Exp TRW BP Our + EM Q 78776 62777 126824 65116 65008 Time 12.1 263.3 50.4 152.8 361.8 Exp TRW BP Our + EM Q 15322 13257 56280 14135 Time 4.5 169.1 29.6 72.1 203.1 Scene Registration Find correspondence between two scenes with common elements (building, fire) Exp TRW BP Our + EM Q 82036 81118 84396 81315 81258 Time 1.7 1371.1 218.0 104.9 373.6 Exp TRW BP Our + EM Q 68572 67616 70239 67682 67676 Time 1.3 1058.2 160.0 73.6 240.5