Math 180 Packet #9 Related Rates.

Slides:



Advertisements
Similar presentations
4.6 Related Rates Any equation involving two or more variables that are differentiable functions of time t can be used to find an equation that relates.
Advertisements

ITK-122 Calculus II Dicky Dermawan
Section 2.6 Related Rates.
3.11 Related Rates Mon Dec 1 Do Now Differentiate implicitly in terms of t 1) 2)
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
Teresita S. Arlante Naga City Science High School.
When we first started to talk about derivatives, we said that becomes when the change in x and change in y become very small. dy can be considered a very.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
3.11 Related Rates Mon Nov 10 Do Now
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
RELATED RATES Mrs. Erickson Related Rates You will be given an equation relating 2 or more variables. These variables will change with respect to time,
Related Rates Test Review
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
Related Rates 3.7. Finding a rate of change that cannot be easily measured by using another rate that can be is called a Related Rate problem. Steps for.
Problem of the Day The graph of the function f is shown in the figure above. Which of the following statements about f is true? b) lim f(x) = 2 x a c)
Related Rates 5.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
Related Rates Greg Kelly, Hanford High School, Richland, Washington.
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
RELATED RATES. P2P22.7 RELATED RATES  If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
Related Rates. I. Procedure A.) State what is given and what is to be found! Draw a diagram; introduce variables with quantities that can change and constants.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
3.11 Related Rates Tues Nov 10 Do Now Differentiate implicitly in terms of t 1) 2)
Related Rates.
Sec 4.1 Related Rates Strategies in solving problems: 1.Read the problem carefully. 2.Draw a diagram or pictures. 3.Introduce notation. Assign symbols.
RELATED RATES Example 1 Air is being pumped into a spherical balloon so that its volume increases at a rate of 100 cm3/s. How fast is the radius of the.
in terms of that of another quantity.
Point Value : 50 Time limit : 5 min #1 At a sand and gravel plant, sand is falling off a conveyor and into a conical pile at the rate of 10 ft 3 /min.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
4.1 Related Rates Greg Kelly, Hanford High School, Richland, Washington.
4.6 RELATED RATES. STRATEGIES FOR SOLVING RELATED RATES PROBLEMS 1.READ AND UNDERSTAND THE PROBLEM. 2.DRAW AND LABEL A PICTURE. DISTINGUISH BETWEEN CONSTANT.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Mr. Moore is pushing the bottom end of a meter stick horizontally away from the wall at 0.25m/sec. How fast is the upper end of the stick falling down.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Section 3.9 Related Rates AP Calculus October 15, 2009 Berkley High School, D2B2
3 DERIVATIVES.
Logarithmic Differentiation 对数求导. Example 16 Example 17.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
3.9 Related Rates Mr. Peltier. Related Rates Calculating an unknown rate of change in terms of other rates of change that are known Calculus word (story)
MATH 1910 Chapter 2 Section 6 Related Rates.
Section 2-6 Related Rates
DERIVATIVES WITH RESPECT TO TIME
Sect. 2.6 Related Rates.
Table of Contents 19. Section 3.11 Related Rates.
Calculus I (MAT 145) Dr. Day Monday Oct 16, 2017
Calculus I (MAT 145) Dr. Day Monday Oct 23, 2017
Calculus I (MAT 145) Dr. Day Wednesday Oct 25, 2017
Calculus I (MAT 145) Dr. Day Friday Oct 20, 2017
Calculus I (MAT 145) Dr. Day Friday, October 5, 2018
RATES OF CHANGE: GEOMETRIC.
Related Rates.
Chapter 3, Section 8 Related Rates Rita Korsunsky.
Copyright © Cengage Learning. All rights reserved.
Related Rates 2.7.
Section 2.6 Calculus AP/Dual, Revised ©2017
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Section 3.5 – Related Rates
Calculus I (MAT 145) Dr. Day Wednesday February 27, 2019
AP Calculus AB 5.6 Related Rates.
Calculus I (MAT 145) Dr. Day Monday February 25, 2019
Calculus I (MAT 145) Dr. Day Monday March 4, 2019
§3.9 Related rates Main idea:
Related Rates Section 3.9.
Related Rates AP Calculus Keeper 26.
Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm3/s. How fast is the radius of the balloon.
Presentation transcript:

Math 180 Packet #9 Related Rates

Consider a square that’s increasing in size over time Consider a square that’s increasing in size over time. The area 𝐴 of a square grows faster than the length 𝑥 of its sides. What exactly is the relationship between these rates? We know that 𝐴= 𝑥 2 , and if we differentiate both sides with respect to time 𝑡, we get:

Consider a square that’s increasing in size over time Consider a square that’s increasing in size over time. The area 𝐴 of a square grows faster than the length 𝑥 of its sides. What exactly is the relationship between these rates? We know that 𝐴= 𝑥 2 , and if we differentiate both sides with respect to time 𝑡, we get:

Consider a square that’s increasing in size over time Consider a square that’s increasing in size over time. The area 𝐴 of a square grows faster than the length 𝑥 of its sides. What exactly is the relationship between these rates? We know that 𝐴= 𝑥 2 , and if we differentiate both sides with respect to time 𝑡, we get:

How fast is the area changing when the sides have length 5 m and are changing at a rate of 1 m/s?

Ex 1. Air is being pumped into a spherical balloon so the volume increases at a rate of 100 cm3/s. How fast is the radius of the balloon increasing when the diameter is 50 cm?

Ex 2. A ladder 10 ft long rests against a vertical wall Ex 2. A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away at 1 ft/s, how fast is the top sliding down the wall when the bottom is 6 ft from the wall?

Ex 3. A conical water tank that stands point down has a base radius of 2 m and a height of 4 m. If water is pumped in at a rate of 2 m3/min, find the rate at which the water level is rising when the water is 3 m deep.

Ex 4. Car A is going west at 50 mph. Car B is going north at 60 mph Ex 4. Car A is going west at 50 mph. Car B is going north at 60 mph. Both are going to the same intersection. At what rate are the cars approaching each other when A is 0.3 mi and B is 0.4 mi from the intersection?