Molecular Therapy - Nucleic Acids

Slides:



Advertisements
Similar presentations
Identification of a Novel Substance P–Neurokinin-1 Receptor MicroRNA-221-5p Inflammatory Network in Human Colonic Epithelial Cells  Kai Fang, Aristea.
Advertisements

Volume 342, Issue 1, Pages (January 2014)
Fig. 1 Increased MIR155HG expression correlates with glioma grade and mesenchymal transition and confers a poor prognosis in GBM patients. (A) The level.
Volume 141, Issue 5, Pages e1 (November 2011)
Volume 9, Issue 2, Pages (August 2017)
Cell Physiol Biochem 2017;44:1867– DOI: /
Elevated FOXC2 Expression Promotes Invasion of HCC Cell Lines and is Associated with Poor Prognosis in Hepatocellular Carcinoma Cell Physiol Biochem 2017;44:99–109.
Factor VII-Induced MicroRNA-135a Inhibits Autophagy and Is Associated with Poor Prognosis in Hepatocellular Carcinoma  Kuang-Tzu Huang, I-Ying Kuo, Ming-Chao.
Volume 15, Issue 6, Pages (June 2009)
Cyclin-Dependent Kinase 2 Promotes Tumor Proliferation and Induces Radio Resistance in Glioblastoma  Jia Wang, Tong Yang, Gaofeng Xu, Hao Liu, Chunying.
Volume 145, Issue 2, Pages (August 2013)
DNMT3B Overexpression by Deregulation of FOXO3a-Mediated Transcription Repression and MDM2 Overexpression in Lung Cancer  Yi-Chieh Yang, MS, Yen-An Tang,
Sp1 Suppresses miR-3178 to Promote the Metastasis Invasion Cascade via Upregulation of TRIOBP  Hui Wang, Kai Li, Yu Mei, Xuemei Huang, Zhenglin Li, Qingzhu.
Up-Regulation of RFC3 Promotes Triple Negative Breast Cancer Metastasis and is Associated With Poor Prognosis Via EMT  Zhen-Yu He, San-Gang Wu, Fang Peng,
Characterization of Aurora A and Its Impact on the Effect of Cisplatin-Based Chemotherapy in Patients with Non–Small Cell Lung Cancer  Peng Kuang, Zuhua.
Modulation of K-Ras-Dependent Lung Tumorigenesis by MicroRNA-21
Volume 39, Issue 4, Pages (August 2010)
Molecular Therapy - Nucleic Acids
Volume 25, Issue 8, Pages (August 2017)
Brachyury-YAP Regulatory Axis Drives Stemness and Growth in Cancer
Volume 6, Issue 5, Pages (March 2014)
A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells  Funan Liu, Zhenguo Cheng, Xiaodong Li, Yanshu.
Volume 19, Issue 3, Pages (March 2017)
Molecular Therapy - Nucleic Acids
Volume 5, Issue 6, Pages (December 2013)
Volume 19, Issue 2, Pages (February 2011)
Uc.454 Inhibited Growth by Targeting Heat Shock Protein Family A Member 12B in Non- Small-Cell Lung Cancer  Jun Zhou, Chenghai Wang, Weijuan Gong, Yandan.
Molecular Therapy - Nucleic Acids
Volume 145, Issue 2, Pages (August 2013)
Blockade of Inflammation and Apoptosis Pathways by siRNA Prolongs Cold Preservation Time and Protects Donor Hearts in a Porcine Model  Jia Wei, Shiyou.
Molecular Therapy - Nucleic Acids
Volume 25, Issue 3, Pages (March 2017)
SOX4 Promotes Proliferative Signals by Regulating Glycolysis through AKT Activation in Melanoma Cells  Wei Dai, Xinyuan Xu, Shuli Li, Jingjing Ma, Qiong.
Volume 25, Issue 9, Pages (September 2017)
Inhibition of KLF4 by Statins Reverses Adriamycin-Induced Metastasis and Cancer Stemness in Osteosarcoma Cells  Yangling Li, Miao Xian, Bo Yang, Meidan.
Volume 43, Issue 5, Pages (September 2011)
Volume 9, Issue 2, Pages (August 2017)
Volume 16, Issue 11, Pages (September 2016)
Volume 21, Issue 12, Pages (December 2017)
MiR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling  Hua Jin, Song Luo, Yun Wang, Chang Liu, Zhenghao.
miR-124 Inhibits Lung Tumorigenesis Induced by K-ras Mutation and NNK
Molecular Therapy - Nucleic Acids
Lu Zheng, Nan You, Xiaobing Huang, Huiying Gu, Ke Wu, Na Mi, Jing Li 
Molecular Therapy - Nucleic Acids
Volume 19, Issue 8, Pages (August 2011)
Figure 1. RSPO3 expression is upregulated in bladder cancer
Volume 25, Issue 4, Pages (April 2017)
Shrimp miR-34 from Shrimp Stress Response to Virus Infection Suppresses Tumorigenesis of Breast Cancer  Yalei Cui, Xiaoyuan Yang, Xiaobo Zhang  Molecular.
Volume 7, Issue 6, Pages (December 2016)
An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation  Dimitrios Iliopoulos, Heather A. Hirsch,
Volume 25, Issue 1, Pages (January 2017)
Molecular Therapy - Nucleic Acids
LncRNA TRERNA1 Function as an Enhancer of SNAI1 Promotes Gastric Cancer Metastasis by Regulating Epithelial-Mesenchymal Transition  Huazhang Wu, Ying.
Volume 25, Issue 3, Pages (March 2017)
Long Noncoding RNA BC as a Novel Therapeutic Target for Colorectal Cancer that Suppresses Metastasis by Upregulating TIMP3  Jiaxin Lin, Xin Tan,
MELK Promotes Melanoma Growth by Stimulating the NF-κB Pathway
Negative Regulation of Tumor Suppressor p53 by MicroRNA miR-504
MiR-409 Inhibits Human Non-Small-Cell Lung Cancer Progression by Directly Targeting SPIN1  Qi Song, Quanbo Ji, Jingbo Xiao, Fang Li, Lingxiong Wang, Yin.
The lncRNA PDIA3P Interacts with miR-185-5p to Modulate Oral Squamous Cell Carcinoma Progression by Targeting Cyclin D2  Cheng-Cao Sun, Ling Zhang, Guang.
Molecular Therapy - Nucleic Acids
Molecular Therapy - Nucleic Acids
Volume 25, Issue 8, Pages (August 2017)
Molecular Therapy - Nucleic Acids
Elevated Expression of BIRC6 Protein in Non–Small-Cell Lung Cancers is Associated with Cancer Recurrence and Chemoresistance  Xin Dong, MD, Dong Lin,
The Expression of MicroRNA-598 Inhibits Ovarian Cancer Cell Proliferation and Metastasis by Targeting URI  Feng Xing, Shuo Wang, Jianhong Zhou  Molecular.
Volume 4, Issue 4, Pages (April 2015)
Molecular Therapy - Nucleic Acids
Volume 24, Issue 10, Pages (October 2016)
Volume 26, Issue 9, Pages (September 2018)
Volume 23, Issue 4, Pages (April 2015)
Presentation transcript:

Molecular Therapy - Nucleic Acids miR-1266 Contributes to Pancreatic Cancer Progression and Chemoresistance by the STAT3 and NF-κB Signaling Pathways  Xin Zhang, Dong Ren, Xianqiu Wu, Xi Lin, Liping Ye, Chuyong Lin, Shu Wu, Jinrong Zhu, Xinsheng Peng, Libing Song  Molecular Therapy - Nucleic Acids  Volume 11, Pages 142-158 (June 2018) DOI: 10.1016/j.omtn.2018.01.004 Copyright © 2018 The Authors Terms and Conditions

Figure 1 miR-1266 Is Upregulated in Pancreatic Cancer and Correlated with a Poor Prognosis (A) Real-time PCR analysis of miR-1266 expression in 15 primary pancreatic cancer tissues compared with matched adjacent normal tissues. Transcript levels were normalized to U6 expression. *p < 0.05. (B) Real-time PCR analysis of miR-1266 expression in 107 freshly collected pancreatic cancer tissue samples, 30 adjacent normal pancreatic tissues, and 12 benign pancreatic lesions, including 3 pancreatic cyst samples, 4 pancreatitis samples, 1 pancreatic inflammation and cyst sample, 3 microcystic adenoma samples, and 1 dystrophic calcification sample. Transcript levels were normalized to U6 expression. Lines represent median and lower/upper quartiles. (C) Representative images of low-power (×200, top) or high-power (×600, bottom) fields of miR-21 expression by in situ hybridization (ISH) in pancreatic cancer tissues with different ISH scores (0, 3, 6, and 12), adjacent normal pancreatic tissue (ANT), and benign pancreatic lesions (Benign). Scale bars, 100 μm. (D) The number of pancreatic cancer tissues, ANT, and benign pancreatic lesions in different staining index groups of ISH. (E) Real-time PCR analysis of miR-1266 in 40 pancreatic cancer tissues with high ISH scores compared with 45 pancreatic cancer tissues with low ISH scores. The median ISH score in pancreatic cancer tissues was used to stratify low and high ISH scores. *p < 0.05. (F) Correlation of miR-1266 expression level with ISH scores in pancreatic cancer tissues. (G and H) Kaplan-Meier analysis of overall (G) and progression-free (H) survival curves of patients with pancreatic cancer with high miR-1266 expression (more than median, n = 51) versus low miR-1266 expression (less than median, n = 51). The median of miR-1266 expression levels in 102 pancreatic cancer tissues was used to stratify the high and low expression levels of miR-1266. The data shown in the scatterplot and bar graph were determined by the median with interquartile range and median with SD. p < 0.001, log rank test. (I) Multivariate Cox regression analysis to evaluate the significance of the association between miR-1266 expression and progression-free survival. Hazard ratio (HR) values were obtained by log2 transformation. Molecular Therapy - Nucleic Acids 2018 11, 142-158DOI: (10.1016/j.omtn.2018.01.004) Copyright © 2018 The Authors Terms and Conditions

Figure 2 Upregulation of miR-1266 Is Associated with a Poor Chemotherapy Response in Pancreatic Cancer (A and B) In the TCGA dataset (A) and our pancreatic cancer specimens (B), miR-1266 expression levels were much higher in pancreatic cancer patients with a poor chemotherapy response (progressive disease [PD] or stable disease [SD]) than in those with a good response (complete response [CR] or partial response [PR]). (C and D) Percentages and numbers of samples showed high or low miR-1266 expression in patients with different chemotherapy responses in the TCGA dataset (C) and our pancreatic cancer specimens (D). The 102 pancreatic cancer tissues were obtained from patients with gemcitabine-based treatment. (E) Apoptotic ratio of nine different pancreatic cancer cell line after treatment with 10 μm GEM. (F) Expression levels of miR-1266 in pancreatic cancer cells after treatment with 10 μm GEM. (G) Correlation of miR-1266 expression level with apoptotic ratio in pancreatic cancer cells after treatment with 10 μM GEM. Molecular Therapy - Nucleic Acids 2018 11, 142-158DOI: (10.1016/j.omtn.2018.01.004) Copyright © 2018 The Authors Terms and Conditions

Figure 3 miR-1266 Promotes Chemoresistance in Pancreatic Cancer In Vitro (A) Annexin V-FITC/PI staining of the indicated cells treated with gemcitabine (10 μM) for 36 hr. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. (B) JC-1 staining showed that silencing miR-1266 decreased the mitochondrial potential in a dose-dependent manner in pancreatic cancer cells. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. (C) Western blotting analysis of Bcl-2, Bcl-xL, Mcl-1, and Survivin in the indicated cells. (D and E) Analysis of the activities of caspase-9 (D) and caspase-3 (E) as detected by the cleaved forms of these two proteins. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. Molecular Therapy - Nucleic Acids 2018 11, 142-158DOI: (10.1016/j.omtn.2018.01.004) Copyright © 2018 The Authors Terms and Conditions

Figure 4 Anta-1266 Re-sensitizes Pancreatic Cancer Cells to Gemcitabine in Orthotopic Xenografts (A) Xenograft model in nude mice. Shown are representative images of tumors in mice injected with scramble, a low dose of anta-1266 (0.1 mmol/L), and a high dose of anta-1266 (1 mmol/L). Mice were euthanized, and tumors from each experimental group were excised. (B) After 7 days of inoculating AsPC-1 cells, mice were intraperitoneally injected with 50 μg/g gemcitabine (GEM) twice each week for 4 weeks. Region of interest (ROI) signaling in the low-dose anta-1266, high-dose anta-1266, and scramble groups was measured from the fifth day at 5-day intervals. Data presented are the mean ± SD. (C) Tumor weights of each group. (D) The overall survival of mice in the indicated groups. (E) Representative H&E staining images from the indicated tumors of mice. Scale bars, 100 μm. (F) Caspase-3 activity in the tumor tissues formed by the low-dose anta-1266, high-dose anta-1266, and scramble groups. Molecular Therapy - Nucleic Acids 2018 11, 142-158DOI: (10.1016/j.omtn.2018.01.004) Copyright © 2018 The Authors Terms and Conditions

Figure 5 miR-1266 Activates the STAT3 and NF-κB Signaling Pathways (A) Gene set enrichment analysis (GSEA) revealed that miR-1266 expression significantly and positively correlated with the IL-6- and NF-κB-regulated anti-apoptosis signatures. (B) STAT3 and NF-κB transcriptional activity was assessed by luciferase reporter constructs in the indicated cells. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. (C) Real-time PCR analysis of Bcl2, Bcl-xL, MCL1, and BIRC5 in the indicated cells. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. (D) Western blotting of nuclear STAT3 and NF-κB/p65 expression and the phosphorylated levels of STAT3 and NF-κB/p65 in the nucleus. The nuclear protein p84 was used as the nuclear protein marker. (E) STAT3 activity under treatment of the inhibitors Stattic (5 μM) and S3I-201 (100 μM) in the indicated cells. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. (F) NF-κB activity under treatment with the inhibitors LY2409881 (10 μM) and JSH-23 (10 μM) in the indicated cells. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. (G) Annexin V-FITC/PI staining of the indicated cells after treatment with Stattic, S3I-201, LY2409881, and JSH-23. Error bars represent the mean ± SD of three independent experiments. *p < 0.05. Molecular Therapy - Nucleic Acids 2018 11, 142-158DOI: (10.1016/j.omtn.2018.01.004) Copyright © 2018 The Authors Terms and Conditions

Figure 6 miR-1266 Targets Multiple Negative Regulators of STAT3 and NF-κB Signaling (A) Predicted miR-1266 target sequence in 3′ UTRs of SOCS3, PTPN11, ITCH, and TNIP1. (B) Western blotting of SOCS3, PTPN11, ITCH, and TNIP1 expression in the indicated cells. α-Tubulin served as the loading control. (C) Luciferase assay of cells transfected with pmirGLO-3UTR reporter in miR-1266-overexpressing and -silencing cells. (D) miRNP IP assay showing the association between miR-1266 and SOCS3, PTPN11, ITCH, and TNIP1 transcripts in pancreatic cancer cells. Pull-down of IgG antibody served as the negative control. Molecular Therapy - Nucleic Acids 2018 11, 142-158DOI: (10.1016/j.omtn.2018.01.004) Copyright © 2018 The Authors Terms and Conditions