Unit 2. Day 13..

Slides:



Advertisements
Similar presentations
Dividing Fractions Lesson 5-3.
Advertisements

Dividing Rational Expressions Use the following steps to divide rational expressions. 1.Take the reciprocal of the rational expression following the division.
Fractions and Decimals
Rational Numbers Jeopardy
* A ratio is a comparison of two quantities by division. Ratios like 1 out of 2 can be written as 1:2, ½, or 1 to 2. * When ratios compare a number to.
Dividing Rational Numbers
Operations with Rational Numbers Any number that can be written in the form, where m and n are integers and n 0, is called a rational number In other.
Warm up # (-24) =4.) 2.5(-26) = 2-7(-8)(-3) = 5.) -5(9)(-2) = 3.
Multiplying a Dividing Rational Expressions Lesson 8.4 Algebra II.
MULTIPLY and DIVIDE RATIONAL NUMBERS. MULTPILYING MIXED NUMBERS 1)Change all Mixed numbers to improper fractions 2)Simplify A) Up and Down B) Diagonally.
Terra Nova Practice Lesson 10 Multiplying and Dividing Fractions.
6.2 Multiplying and Dividing Rational Expressions.
Simplify, Multiply & Divide Rational Expressions.
Table of Contents Dividing Rational Expressions Use the following steps to divide rational expressions. 1.Take the reciprocal of the rational expression.
Repeating decimals – How can they be written as fractions? is a rational number.
Fractions and Decimal Fractions Fractions Decimal Fractions
In this lesson you are going to learn how to divide fractions by multiplying by the reciprocal.
Evaluate each expression if a = 3, b = 7, and c =
Multiplying Decimals 3-6 & 3-7.
Subtraction Addition Multiplication Fractions Division 1pt 1 pt 1 pt
“Take the top #, Divide by the bottom #!”
Unit 2. Day 4..
(multiplication/ division)
Unit 2. Day 10..
Unit 2. Day 1..
Opening Activity Complete the following problems in your spiral on your “Multiplying Positive & Negative Integers” page. Write both the expression.
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Domain 1: The Number System
Unit 1. Day 4..
Unit 1. Day 7..
Unit 3. Day 2..
Unit 2. Day 7..
Multiplication and Division of Fractions and Decimals
Unit 2. Day 6..
Unit 2. Day 5..
Unit 3. Day 1..
Dividing Fractions Lesson 5-9.
Lesson 1-5 Solving Equations with Rational Numbers
Unit 2. Day 4..
I can divide integers at least at 80% mastery.
I Can write fractions as terminating or repeating decimals and write decimals as fractions at least at 80% proficiency. 7.NS.2 Apply and extend previous.
Unit 2. Day 4..
Unit 3. Day 22..
Unit 2. Day 5..
Unit 2. Day 11..
Multiplying Decimals 3-6 & 3-7.
Fractions and Decimals
Unit 2. Day 7..
Fractions, Decimals & Percentages
Comparing and Ordering Rational Numbers Guided Notes
Unit 2. Day 4..
Unit 2. Day 14..
Unit 1. Day 9..
Unit 2. Day 14..
Unit 2. Day 10..
Unit 2. Day 8..
Unit 2. Day 12..
Dividing Decimals Whole Number Divided by a Decimal 1 ÷ 0.2 = ?
Module 4: MULTIPLYING and DIVIDING FRACTIONS
Converting between Percentages, Decimals and Fractions
Math-7 NOTES 1) 3x = 15 2) 4x = 16 Multiplication equations:
can you distinguish between multiplication and division!
Tuesday’s Warm Up.
Say the decimal properly. Write the fraction, then simplify.
Multiplying and Dividing Rational Numbers
Ticket in the Door Agenda -5(5-2)= 3(9+14) × (- 2 4 ) 6 3 ÷ 4 9
Multiplying and Dividing Decimals
Part Two: Introducing Percentages and Decimals
Presentation transcript:

Unit 2. Day 13.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Dividing Rational Numbers 7.NS.A.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers

Q: What is a rational number? A: A number that can be written as a fraction 𝑝 𝑞 − 5 7 − 5 7 2 3 2 3 −4 5 6 −4 5 6 0.875 0.875 −16. 3 −16. 3 Before we multiplied: ∙ ÷ Today: ÷ ∙

Today’s Lesson Multiplying Decimals Dividing Decimals

Example A: Multiply 4.8 ∙ −2.4 4.8 ∙ −2.4 1 3 4 8 10 −2 4 10 4 . 8 2 . 4 × 48 10 − 24 10 1 ∙ 1 9 2 9 6 ∎ + 24 5 − 12 5 288 ∙ = − 25 1 1 . 5 2 −11 13 25 − 11.52 =

6 . 4 0 . 2 1 2 8 ∎ . 1 2 8 1.28 × + Example B*: Multiply −6.4 ∙ −0.2 −6 4 10 − 2 10 6 . 4 0 . 2 × − 64 10 − 2 10 1 2 8 ∙ ∎ + 32 − 32 5 − 1 5 = + ∙ 25 1 . 2 8 1 7 25 1.28 + =

Example C*: Multiply −1.6 ∙ 2.65 3 3 2 65 100 2 . 6 5 −1 6 10 1 . 6 × 1 − 16 10 265 100 1 1 5 9 ∙ 2 + 6 5 ∎ − 8 5 53 20 424 4 . 2 4 ∙ = − 100 − 106 25 −4 6 25 4.24 − =

Today’s Lesson Multiplying Decimals Dividing Decimals

Example D: −3.6÷0.5 −3.6 3.6 ÷ 0.5 0.5 . − 7 2 −3 6 10 5 10 . 5 3 6 . − 3 5 1 − 36 10 5 10 − ÷ 1 0 − 18 5 2 1 1 2 36 ÷ ∙ = − 5 −7 1 5 =

Example E*: −4.8÷1.5 −4.8 4.8 ÷ 1.5 1.5 . − 3 2 −4 8 10 1 5 10 1 . 5 4 8 . − 4 5 3 − 48 10 15 10 − ÷ 3 0 − 24 5 2 3 3 2 48 ÷ ∙ = − 15 − 16 5 −3 1 5 =

Example F*: −6.25÷−0.75 −6.25 6.25 ÷ −0.75 0.75 + 8 . 3 3 3 −6 25 100 − 75 100 . 7 5 6 2 5 . − 6 0 0 2 5 − 625 100 − 75 100 − ÷ 2 2 5 2 5 − 2 2 5 − 25 4 − 4 3 − 3 4 2 5 100 ÷ ∙ = + 12 25 3 =8 1 3 =